
qunfold: Composable Quantification and
Unfolding Methods in Python

Mirko Bunse[0000�0002�5515�6278]

Artificial Intelligence Unit, TU Dortmund University, 44227 Dortmund, Germany
mirko.bunse@cs.tu-dortmund.de

Abstract. We present qunfold, a Python package that implements
several quantification and unfolding methods. A unique capability of
qunfold is the composition of novel methods from existing and easily cus-
tomized loss functions and data representations. Moreover, this package
leverages a powerful optimization back-end to yield state-of-the-art per-
formances for all compositions. This paper introduces the common usage
patterns for qunfold, revisits the technical background of the package,
and empirically demonstrates the resulting performance.

Keywords: Quantification · Unfolding · Unconstrained optimization
· Multi-class classification · Software

1 Introduction

Many quantification methods, i.e., many methods for the supervised estimation
of class prevalences [12], can be described as a combination of a loss function and
a data representation [5,11]. This observation motivates implementations that
make this combination explicit, to provide a high amount of code quality (sep-
aration of concerns, reusability) and to establish an opportunity of composing
new methods from existing components.

The value of such compositions comes from the specific characteristics that
each component introduces; unfolding methods, for instance, address an order
among the classes through regularization [6]. Hence, the name qunfold mingles
the terms “quantification” and “unfolding” to hint at the package’s capability of
composing new methods from existing loss functions and data representations.
The diversity of quantification use cases, including political sciences, market
research, epidemiology, and others [8] calls for this capability.

Implementations of quantification methods have to define another aspect in
addition to the loss function and data representation: the numerical optimization
algorithm through which the loss is minimized. This additional aspect is vital in
the multi-class setting, where an exhaustive search of all class prevalences is not
feasible. A recent proposal is to employ a soft-max operator to ensure legitimate
and accurate results with unconstrained optimization algorithms [4], including
those well-tested algorithms that a standard numpy/scipy stack provides.

2 M. Bunse

Our Python package qunfold1 leverages these recent developments to pro-
vide a highly performant and composable implementation of many existing quan-
tification and unfolding methods. The package, which is released under an open-
source license, is designed for meeting the following goals:

– focus on methods (disregarding data loading, evaluation protocols, etc.)
– easy composition of new methods
– high prediction performance due to a powerful optimization routine
– easy extendability through API design and through automatic differentiation
– compliance with the conventions established by scikit-learn
– detailed documentation and high test coverage

These goals partially differ from the goals of QuaPy [16], the current state-of-
the-art implementation for all aspects of quantification, including the acquisition
of data and the evaluation of methods. QuaPy provides a large collection of
quantification methods, but does not allow to recompose them. We provide a thin
wrapper for qunfold methods, which allows users to combine the functionalities
of QuaPy and our package.

We introduce the usage of qunfold in Sect. 2 and revisit its conceptual
background in Sect. 3. Sect. 4 demonstrates the performance of our package
before Sect. 5 concludes with prospective extensions.

2 Usage

The package is easily installed via pip and its quantification methods are used
like classifiers from scikit-learn. These design choices result in a seamless
access for newcomers of quantification, as illustrated in Listing 1.

from qunfold import ACC # Adjusted Classify and Count
from sklearn.ensemble import RandomForestClassifier

acc = ACC(# use OOB predictions for training the quantifier
RandomForestClassifier(oob_score=True)

)
acc.fit(X_trn, y_trn) # fit to training data
p_hat = acc.predict(X_tst) # estimate a prevalence vector p̂ 2 RC

Listing 1: A minimal example where the quantification method Adjusted Classify
and Count (ACC) [12] predicts the class prevalences of a testing sample.

Beyond the existing methods of quantification and unfolding, users have the
opportunity to compose new methods from existing loss functions and data rep-
resentations. This opportunity also includes the combination of multiple loss
1 https://github.com/mirkobunse/qunfold

https://github.com/mirkobunse/qunfold

qunfold 3

the ACC loss, regularized with strength 0.01 for ordinality
loss = TikhonovRegularized(LeastSquaresLoss(), 0.01)

the original data representation of ACC with 10-fold cross-validation
transformer = ClassTransformer(CVClassifier(LogisticRegression(), 10))

the ordinal variant of ACC, wrapped for being used in QuaPy
ordinal_acc = QuaPyWrapper(GenericMethod(loss, transformer))

Listing 2: The ordinal variant [6] of ACC is composed of the original ACC loss,
a regularization term, and the original data representation of ACC. Finally, this
variant is wrapped for being used in QuaPy.

terms, like regularizers, through a CombinedLoss type. Listing 2 conveys, as an
example of composition, the creation of an ordinal variant of ACC.

The creation of novel data representations only requires implementing the
fit_transform and transform methods of the AbstractTransformer type.
Novel loss functions are easily implemented through jax [13], a package which
automatically differentiates the loss while complying to the well-known numpy
API. All of the above aspects are thoroughly documented, illustrated through
examples, and tested in a continuous integration pipeline.

3 Background

We intend to predict p 2 RC , the class prevalences of an unlabeled data sam-
ple D 2 Xm. For this purpose, we have a labeled training set

SC
i=1 Di where

Di contains the data items of the i-th class. The composition of quantification
methods is enabled through the observation [5,11] that many methods estimate
p by solving a system of linear equations

q = Mp (1)

where [q]i =
1

|D|
X

x2D

[f(x)]i

is a mean embedding of D, which employs a feature transformation f : X ! RF .
Here, the matrix M 2 RF⇥C with entries

[M]ji =
1

|Dj |
X

x2Dj

[f(x)]i

represents the mean embedding of each class in the training set.
Finding a solution p̂ for Eq. 1 requires the minimization of a loss function

L : RC ! R, which reflects the goodness of p̂. Hence, quantification methods of
the above kind are defined through a loss function and a feature transformation.

4 M. Bunse

3.1 Unconstrained Soft-Max Optimization

Given a loss function and a feature transformation, a recent proposal [4] for
solving Eq. 1 is

p̂ = softmax
�
l⇤
�

(2)
where l⇤ = argmin

l2RC

L
�
softmax(l);q,M

�

is a vector of latent quantities. Here, the output of the soft-max operator is
[softmax(l)]i = exp([l]i)/(

PC
j=1 exp([l]j)), which ensures that any p̂ is a legiti-

mate estimate of class prevalences. We regard an estimate as being legitimate if
it represents a probability density function, i.e., if [p̂]i � 0 8 i and

P
i[p̂]i = 1.

The latent quantities can be interpreted as scaled log-probabilities of the classes.
In qunfold, we establish the uniqueness of l⇤ by fixing the first dimension

to the constant value [l]1 = 0. Thereby, we minimize L only over (n� 1) actual
variables in l. This reduction of dimensionality comes without sacrificing the
optimality of l⇤; it only defines the scaling of the latent quantities.

3.2 Out-of-Bag Training of Quantifiers

The estimation of M (see Eq. 1) requires a labeled training set. In case of a
supervised feature transformation f , like the ClassTransformer of ACC, this
estimation should not use the same training data as f ; otherwise, biases of f will
hardly be corrected by the quantification method. One possibility of diversifying
the training data of f and M is through cross-validation [12]. Here, f is trained
with the training folds and M is trained with the test predictions. We implement
this training strategy in the CVClassifier class (revisit Listing 2).

In addition, we implement a similar technique which builds on bagging esti-
mators [3]. Here, f is trained with the training folds and M is trained with the
out-of-bag predictions of the estimator. The advantage of bagging over cross-
validation is that bagging ensembles, like random forests, can be trained at no
extra cost. For this strategy, the bagging classifier can be used directly, without
the need for a meta-classifier (revisit Listing 1).

3.3 Existing Loss Functions and Feature Representations

Our package implements several existing methods in terms of their loss functions
and feature representations, which are listed in Tab. 1. The modular design of our
package enables compositions of novel methods from the existing components.

In case of HDx and HDy [14], we have replaced the original loss function
with a surrogate loss that is better suited for numerical optimization. The orig-
inal loss, which is the average of feature-wise (or class-wise) Hellinger distances,
is problematic because it lacks twice differentiability and, hence, complicates
numerical optimizations. As a twice differentiable surrogate, we therefore em-
ploy the average of squared Hellinger distances. This HellingerSurrogateLoss
behaves similar to the original loss, while facilitating numerical optimizations.

qunfold 5

Table 1. Existing methods in terms of their loss functions and feature transformations.

method loss function feature transformation
ACC [12] LeastSquaresLoss() ClassTransformer(*, is_probabilistic=False)
PACC [1] LeastSquaresLoss() ClassTransformer(*, is_probabilistic=True)
HDx [14] HellingerSurrogateLoss() HistogramTransformer(*)
HDy [14] HellingerSurrogateLoss() HistogramTransformer(*,

preprocessor=ClassTransformer(*))
EDx [15] EnergyLoss(*) DistanceTransformer(*)
EDy [7] EnergyLoss(*) DistanceTransformer(*,

preprocessor=ClassTransformer(*))
RUN [2] TikhonovRegularized(any AbstractTransformer

BlobelLoss(), *)
CC [12] None ClassTransformer(*, is_probabilistic=False)
PCC [1] None ClassTransformer(*, is_probabilistic=True)

4 Performance

We evaluate the performance of our package on the public data set [9] of the
LeQua2022 competition [10]. This dataset, which contains 28 classes, consti-
tutes a gold-standard benchmark for multi-class text quantification. We employ
the vectorial representation of the data and a logistic regression classifier with
C 2 {10�3, 10�2, 10�1, 100, 101}, where the best C is chosen separately for each
quantification method on hold-out validation samples. A classifier of this kind
obtained winning performances during the competition [17]. For HDy, we op-
timize the number of bins per class on hold-out data over B 2 {2, 4, 6}. We
compare the results of qunfold and QuaPy in terms of the mean absolute error
(AE) and in terms of the mean relative absolute error (RAE). We omit HDx,
EDx, CC, and PCC because we deem these methods unsuitable for text quan-
tification. We also omit several methods that are available in QuaPy but not
(yet) in qunfold.

Table 2. Performance comparison between qunfold and QuaPy. The performances
are measured in terms of two error metrics, AE and RAE. The performance of the best
implementation, for each method and metric, is printed in boldface. An asterisk (⇤)
indicates that a method is missing from QuaPy v.0.1.7.

method AE (#) RAE (#)
QuaPy qunfold QuaPy qunfold

ACC 0.0190±0.0045 0.0164±0.0046 1.5380±1.4460 1.2553±1.1763
PACC 0.0197±0.0050 0.0119±0.0034 1.7070±2.0091 0.9594±0.8342
HDy 0.0163±0.0042 0.0143±0.0041 1.3634±1.2062 1.1319±1.0803
EDy ⇤ 0.0125±0.0036 ⇤ 1.1856±1.1080
RUN ⇤ 0.0165±0.0046 ⇤ 1.2305±1.1478

6 M. Bunse

The results of our evaluation are displayed in Tab. 2. They convey that the
methods from qunfold beat the corresponding implementations from QuaPy,
which is the state-of-the-art package for quantification. We attribute this out-
come to the powerful soft-max optimization technique that our package lever-
ages. The current version of Quapy2, in contrast, employs the pseudo-inversion
method for ACC and PACC and constrained optimization for HDy, all of which
have been shown to yield inferior performances [4]. We note, however, that
our soft-max optimization is computationally more expensive than the pseudo-
inverse method.

5 Conclusion

We have presented qunfold, a highly performant and composable implemen-
tation of several quantification and unfolding methods. This implementation
leverages two recent findings: first, that many quantification methods consist of
a loss function and a data representation, which can be reassembled in arbitrary
ways; second, that these methods can be optimized through a soft-max operator.
Further improvements of our implementation are a surrogate loss for HDx and
HDy and an optional out-of-bag training of quantifiers. These features lead to
performances that beat QuaPy, the current state-of-the-art implementation for
quantification methods. We recommend qunfold to anyone who is looking for
composability or for strong baseline methods.

In the future, we are planning to extend our package with additional loss
functions and data representations. We also conceive novel features, like ensem-
bling and automatic compositions of methods, as valuable extensions.

Acknowledgements This work was partly funded by the Federal Ministry of
Education and Research of Germany and the state of North Rhine-Westphalia
as part of the Lamarr Institute for Machine Learning and Artificial Intelligence.

We also thank the reviewers of our LQ 2022 publication [4] for pointing out
that the solution of Eq. 2 is unique if [l]1 = 0 is fixed. This observation has
substantially improved our implementation.

References

1. Bella, A., Ferri, C., Hernández-Orallo, J., Ramírez-Quintana, M.J.: Quantifica-
tion via probability estimators. In: Int. Conf. on Data Mining. pp. 737–742. IEEE
(2010). https://doi.org/10.1109/ICDM.2010.75

2. Blobel, V.: Unfolding methods in high-energy physics experiments. Tech. rep.,
CERN (1985). https://doi.org/10.5170/CERN-1985-009.88, https://cds.cern.ch/
record/157405/files/p88.pdf

3. Breiman, L.: Bagging predictors. Mach. Learn. 24(2), 123–140 (1996). https://doi.
org/10.1007/BF00058655

2 https://github.com/HLT-ISTI/QuaPy/releases/tag/0.1.7

https://doi.org/10.1109/ICDM.2010.75
https://doi.org/10.1109/ICDM.2010.75
https://doi.org/10.5170/CERN-1985-009.88
https://doi.org/10.5170/CERN-1985-009.88
https://cds.cern.ch/record/157405/files/p88.pdf
https://cds.cern.ch/record/157405/files/p88.pdf
https://doi.org/10.1007/BF00058655
https://doi.org/10.1007/BF00058655
https://doi.org/10.1007/BF00058655
https://doi.org/10.1007/BF00058655
https://github.com/HLT-ISTI/QuaPy/releases/tag/0.1.7

qunfold 7

4. Bunse, M.: On multi-class extensions of adjusted classify and count. In: Int.
Worksh. on Learn. to Quantify: Meth. and Appl. pp. 43–50 (2022), https://lq-2022.
github.io/proceedings/CompleteVolume.pdf

5. Bunse, M.: Unification of algorithms for quantification and unfolding. In: Worksh.
on Mach. Learn. for Astropart. Phys. and Astron. pp. 459–468. Gesellschaft für
Informatik e.V. (2022). https://doi.org/10.18420/INF2022_37

6. Bunse, M., Moreo, A., Sebastiani, F., Senz, M.: Ordinal quantification through
regularization. In: Europ. Conf. on Mach. Learn. and Knowl. Discov. in Databa-
ses. pp. 36–52. Springer (2023). https://doi.org/10.1007/978-3-031-26419-1_3

7. Castaño, A., González, P., González, J.A., del Coz, J.J.: Matching distributions
algorithms based on the earth mover’s distance for ordinal quantification. IEEE
Trans. on Neur. Netw. and Learn. Syst. pp. 1–12 (2022). https://doi.org/10.1109/
tnnls.2022.3179355

8. Esuli, A., Fabris, A., Moreo, A., Sebastiani, F.: Learning to Quantify, The Inform.
Retr. Series, vol. 47. Springer (2023). https://doi.org/10.1007/978-3-031-20467-8

9. Esuli, A., Moreo, A., Sebastiani, F.: Learning to quantify: LeQua 2022 datasets
(2021). https://doi.org/10.5281/zenodo.6546188

10. Esuli, A., Moreo, A., Sebastiani, F.: LeQua@CLEF2022: Learning to quantify.
In: Adv. in Inform. Retr. pp. 374–381. Springer (2022). https://doi.org/10.1007/
978-3-030-99739-7_47

11. Firat, A.: Unified framework for quantification (2016), http://arxiv.org/abs/1606.
00868

12. Forman, G.: Quantifying counts and costs via classification. Data Mining and
Knowl. Discov. 17(2), 164–206 (2008). https://doi.org/10.1007/s10618-008-0097-y

13. Frostig, R., Johnson, M.J., Leary, C.: Compiling machine learning programs via
high-level tracing. Syst. for Mach. Learn. 4(9) (2018), http://github.com/google/
jax

14. González-Castro, V., Alaíz-Rodríguez, R., Alegre, E.: Class distribution estimation
based on the Hellinger distance. Inform. Sci. 218, 146–164 (2013). https://doi.org/
10.1016/j.ins.2012.05.028

15. Kawakubo, H., du Plessis, M.C., Sugiyama, M.: Computationally efficient class-
prior estimation under class balance change using energy distance. IEICE
Trans. Inform. Syst. 99-D(1), 176–186 (2016). https://doi.org/10.1587/transinf.
2015EDP7212

16. Moreo, A., Esuli, A., Sebastiani, F.: QuaPy: A Python-based framework for quan-
tification. In: Int.Conf. on Inform. and Knowl. Management. pp. 4534–4543. ACM,
New York, NY, USA (2021). https://doi.org/10.1145/3459637.3482015

17. Senz, M., Bunse, M.: DortmundAI at LeQua 2022: Regularized SLD. In: Conf. and
Labs of the Eval. Forum. vol. 3180, pp. 1911–1915. CEUR (2022), http://ceur-ws.
org/Vol-3180/paper-152.pdf

https://lq-2022.github.io/proceedings/CompleteVolume.pdf
https://lq-2022.github.io/proceedings/CompleteVolume.pdf
https://doi.org/10.18420/INF2022_37
https://doi.org/10.18420/INF2022_37
https://doi.org/10.1007/978-3-031-26419-1_3
https://doi.org/10.1007/978-3-031-26419-1_3
https://doi.org/10.1109/tnnls.2022.3179355
https://doi.org/10.1109/tnnls.2022.3179355
https://doi.org/10.1109/tnnls.2022.3179355
https://doi.org/10.1109/tnnls.2022.3179355
https://doi.org/10.1007/978-3-031-20467-8
https://doi.org/10.1007/978-3-031-20467-8
https://doi.org/10.5281/zenodo.6546188
https://doi.org/10.5281/zenodo.6546188
https://doi.org/10.1007/978-3-030-99739-7_47
https://doi.org/10.1007/978-3-030-99739-7_47
https://doi.org/10.1007/978-3-030-99739-7_47
https://doi.org/10.1007/978-3-030-99739-7_47
http://arxiv.org/abs/1606.00868
http://arxiv.org/abs/1606.00868
https://doi.org/10.1007/s10618-008-0097-y
https://doi.org/10.1007/s10618-008-0097-y
http://github.com/google/jax
http://github.com/google/jax
https://doi.org/10.1016/j.ins.2012.05.028
https://doi.org/10.1016/j.ins.2012.05.028
https://doi.org/10.1016/j.ins.2012.05.028
https://doi.org/10.1016/j.ins.2012.05.028
https://doi.org/10.1587/transinf.2015EDP7212
https://doi.org/10.1587/transinf.2015EDP7212
https://doi.org/10.1587/transinf.2015EDP7212
https://doi.org/10.1587/transinf.2015EDP7212
https://doi.org/10.1145/3459637.3482015
https://doi.org/10.1145/3459637.3482015
http://ceur-ws.org/Vol-3180/paper-152.pdf
http://ceur-ws.org/Vol-3180/paper-152.pdf

