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Abstract. Quantification research proposes methods to estimate the
class distribution in an independent sample. Many areas, such as epi-
demiology, sentiment analysis, political research and ecological surveil-
lance, rely on quantification methods to estimate aggregated quantities.
For instance, epidemiologists are often concerned with the dynamics of
the number of disease cases across space and time. Thus, while classifi-
cation predicts individual subjects, quantification is the class of methods
that directly estimate the number of cases. Quantification is a thriving re-
search area, and the community has proposed several approaches in the
last decade. Nevertheless, most quantification research has focused on
binary-class quantifiers, expecting these approaches to extend to multi-
class using the one-versus-all (OVA) approach. However, enough empir-
ical evidence indicates that OVA multi-class quantifiers’ performance is
subpar. This paper has two main contributions. First, we demonstrate
why OVA quantifiers are doomed to underperform in multi-class settings
due to a distribution shift they cannot handle. Second, we propose a new
class of quantifiers based on ensemble learning that boosts the perfor-
mance of the base quantifiers in the binary and, more importantly, multi-
class settings. In one of the most comprehensive experimental setups ever
attempted in quantification research, we show that our ensembles are the
best-performing quantifiers compared with 33 state-of-the-art (single and
ensemble) quantifiers and rank first in a recent quantification competi-
tion.

Keywords: Quantification · prevalence estimation · class probability
estimation · ensembles · multi-class · machine learning.

1 Introduction

Quantification is the Machine Learning task that proposes methods to estimate
the class distribution in an independent sample [8]. It finds applications in areas
where we are more interested in understanding the behavior of groups than
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predicting individual cases. One well-known example is sentiment analysis, in
which we often want to understand trends, such as the percentage of users making
positive comments about a personality, brand, or product in a given period.

Classify & Count (CC) is the simplest quantifier. It is a direct application of
classification to solve quantification problems. However, despite its simplicity, CC
is a biased quantifier. Forman [9] reveals that CC contains a systematic bias. For
an imperfect classifier, the CC method will underestimate the true proportion of
positives p̂ in a test set for p̂ > p

⇤ and overestimate for p̂ < p
⇤, where p

⇤ is the
particular proportion at which the CC method estimates correctly. This flaw has
motivated a thriving community of researchers to develop novel quantifiers that
provide accurate class estimates for the whole spectrum of class distributions.

So far, the quantification community has heavily focused on developing bi-
nary quantifiers. The idea is that those binary quantifiers can be extended to
multi-class problems using the one-versus-all (OVA) approach. An OVA quanti-
fier performs independent binary quantifications for each class versus all others
and then normalizes the final estimates to sum to 100%.

However, recent empirical evidence has shown that OVA quantifiers’ perfor-
mance is subpar in multi-class problems [28]. Even more worrisome, multi-class
quantifiers perform better than OVA quantifiers but just by a small margin. In
this paper, we make two contributions to multi-class quantification. (i) For the
first time, we explain why OVA quantifiers underperform in multi-class prob-
lems. (ii) We propose a simple ensemble approach that boosts the performance
of existing multi-class quantifiers.

As contributions of this paper, we show that modeling a multi-class quantifi-
cation problem with a set of OVA datasets induces a distribution shift in p(x|y).
However, existing quantification methods assume that p(x|y) is constant. There-
fore, these methods are doomed to perform poorly in multi-class settings. This
finding will sound counter-intuitive to a significant part of the Machine Learn-
ing community since OVA is one of the de-facto approaches to converting binary
classifiers into multi-class.

We show that a simple ensemble can significantly improve the performance
of existing quantifiers. In a comprehensive empirical comparison with 33 state-
of-the-art quantifiers and 40 datasets, our proposals are the best-performing
quantifiers for both binary and multi-class datasets. In addition, our methods
rank first in a recent quantification competition.

This paper is organized as follows. Section 2 introduces the basic concepts
and the notation used throughout this paper. Section 3 presents the related
work, briefly describing the 33 quantifiers used in our experiments. Section 4 dis-
cusses the limitations of using the OVA approach for multi-class quantification.
Section 5 describes the ensemble approach that constitutes our main technical
contribution. Section 6 presents the experimental results in both multi-class and
binary quantification settings as well as the LeQua 2022 competition. Finally,
Section 7 concludes our work and presents directions for future work.
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2 Background

This section introduces the mathematical notation and fundamental concepts
employed throughout this work.

A dataset is a collection of N examples such that D = {(xn, yn)}Nn=1
. Each

xn 2 X is a vector with M attributes, and yn 2 Y = {1, 2, . . . , C} is the class
label associated with xn.

We can create a predictive model with the dataset D. The primary goal of
classification is to predict the class label of each example using the covariates.
Hence, the classifier is a predictive model hc trained from D such that:

hc : X ! {1, 2, . . . , C}

In this paper, we are interested in quantification problems. We define a quan-
tifier as a supervised model learned from a dataset D to estimate the class
prevalence in a test sample. Therefore, the quantifier is a function hq such that:

hq : S ! [0, 1]C

where S represents all possible sets of samples under the representation X . From
an unlabeled set S 2 S, hq outputs a vector p̂ = hp̂niCn=1

, where p̂n is the estimate

of the proportion of the class n, such that
PC

n=1
p̂n = 1. The aim is to estimate

the predicted ratios p̂ as close as possible to the true ratios hp(n)iCn=1
of the

unlabeled set S.
Comparing the functions hc and hq, we can notice the similarities and dif-

ferences in classification and quantification. These two tasks use the same data
representation, a labeled tabular dataset D, to induce their models. However,
the objectives are distinct. While a classifier outputs a class label for each input
instance, a quantifier outputs a class distribution estimate for a given sample of
examples.

In both classification and quantification, the examples are independent of
each other. Thus, the occurrence of one instance does not change the probability
of the other instances. However, training and test samples are not identically
distributed in quantification problems, as we expect that the class distribution
will change.

Let us introduce one example to make these ideas more concrete. In the case
of sentiment analysis, we can create a dataset of, say, tweets and label them as
{�, ,�}, representing the positive, negative and neutral classes, respectively.
A classifier will take a single tweet as input and output a unique class label. In
contrast, a quantifier will take a set of tweets, such as the tweets from the last 24
hours that match the search criteria, and will output a vector p̂ = hp̂�, p̂ , p̂�i.
In this example, p̂� is the estimated percentage of users expressing positive
sentiment.

Two final observations about quantifiers. First, we can trivially convert the
class probability estimates into counts by multiplying these probabilities with
the test sample size. Thus, quantifiers are also known as counters. Second, the
test sample size can vary according to the application. In the example of tweet
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sentiment analysis, we can have a test sample with tweets from the last hour,
day, week, or month. Thus, it is essential to consider di↵erent test sample sizes
when assessing quantifiers [19].

We conclude this section by defining a scorer as several quantifiers use them
as an intermediate step in their computation. A scorer is a model induced from
D such that:

hs : X ! RC

A scorer outputs a vector s = hsniCn=1
of real values called scores for a

given input example. Each score sn has a positive correlation with the posterior
probability of the class yn, i.e., p(yn|x). Accordingly, a higher sn value means
an increased chance for an example belonging to the class yn.

3 Related Work

This section reviews all existing quantification algorithms in the literature. Due
to lack of space, we briefly describe the 29 single quantifiers and one ensemble
approach and provide relevant references for readers interested in further details.
We organize this section according to the taxonomy proposed by [12], resulting
in three groups of methods:

Classify, count & correct: These methods use a classifier to classify each in-
stance and then count them by the class label. They often include an addi-
tional step that applies a correction to the counts.

Distribution matching: These methods parametrically model the training
distribution and later search for the parameters that provide the best match
against the test distribution.

Adaptations of classification algorithms: These methods adapt classifica-
tion algorithms, transforming them into quantifiers.

We conclude this section by describing the only ensemble quantification ap-
proach in the literature.

3.1 Classify, Count & Correct

is a class of methods that count the classes using a classifier and apply a correc-
tion factor to obtain the final estimate.

CC (Multi-class): Classify & Count (CC) uses a classifier to count the class
predictions for each label. Forman [9] shows that CC is a biased quantifier.

ACC (Binary): Adjusted Classify & Count (ACC) corrects the output of the
CC method by employing the following correction factor:

pACC(y = �|S) = pCC(y = �|S)� fpr

tpr � fpr
(1)
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where pCC(y = �|S) is the positive class prevalence provided by CC in the
test set S, and fpr is the false-positive and tpr is the true-positive rates
often estimated in the training set using cross-validation.

PCC and PACC (Binary): Probabilistic Classify & Count (PCC) and Prob-
abilistic Adjusted Classify & Count (PACC) [3] assume that probabilities
have richer information than the label predictions of the classifier. PCC is
a counterpart of the CC method, averaging the probabilities to estimate
the class prevalence. Similar to ACC, PACC corrects the estimate of PCC
using Equation 1. Since the class distribution influences the calibration of
the classifiers, PCC and PACC approaches su↵er from a chicken-and-egg
problem [9].

GACC and GPACC (Multi-class): The Generalized Adjusted Classify &
Count (GACC) and Generalized Probabilistic Adjusted Classify & Count
(PACC) are multi-class generalizations of ACC and PACC, respectively [7].
These methods build the following system of equations and solve it via con-
strained least-squares regression:

p(hc(S) = n) =
CX

i=1

p(hc(S) = n|y = i)p(y = i)

for n = 1 : C. As P (hc(S) = n|y = i) is unknown, we estimate it using
cross-validation in the training data.

FM (Multi-class): Friedman’s method (FM) [11] also builds a system of equa-
tions. However, unlike GPACC, FM only considers a subset of the test in-
stances with probabilities above the training class prevalences.

X, MAX, T50 (Binary): These methods search for di↵erent classification thresh-
olds aiming for more reliable estimates for fpr and tpr [10]. X selects the
threshold value where the di↵erence between 1 � tpr and fpr is minimal.
MAX chooses the threshold value that maximizes the denominator in Equa-
tion 1. T50 selects the threshold where tpr ⇡ 50%.

MS (Binary): Median Sweep (MS) [10] returns the median of several appli-
cations of the ACC method for a range of classification thresholds. Each
threshold estimates the tpr and fpr using cross-validation and then applies
ACC correction. We use a variant with a subset of the thresholds that pro-
duce a denominator in Equation 1 greater than 0.25.

3.2 Distribution Matching

is a class of methods that parametrically model the training distribution and then
search for the parameter that best matches the training and test distributions.

FMM (Binary): Forman’s Mixture Method (FMM) [8] models the positive
and negative class distributions using cumulative distribution functions (CDFs).
As modeling p(S|y) is often di�cult, this method uses the score distribution,
i.e., P (hs(S)|y), which is more amenable since it is a set of unidimensional
real values. FMM models the training scores from the positive and negative



MC-SQ: A Highly Accurate Ensemble for Multi-class Quantification 13

classes independently, as well as the test scores using CDFs. Then, it com-
pares the test CDF with a mixture of positive and negative class CDFs while
varying a mixture parameter. Forman uses the Probability-Probability plot
to measure the di↵erence between the training and test CDFs and returns
the parameter whose curve produces the minimum di↵erence as the positive
class prevalence.

HDx and HDy (Binary): Gonzalez-Castro et al. [13] propose a mixture method
similar to FMM that uses histograms to represent data distributions and the
Hellinger Distance (HD) to compare those histograms. A weighted sum of the
positive and negative class histograms provides a mixture that is compared
with the test histogram. HDy uses scores to represent the distributions. Con-
versely, HDx operates over each feature independently and averages the HD
values. The following equation describes the search performed by HDy:

pHDy(y = �|S�,S ,S�) =
argmin
0↵1

�
HD

�
↵H[S�] + (1� ↵)H[S ], H[S�]

� 

where HD is the Hellinger distance and H[·] is a transformation of scores into
a histogram representation, and S

�, S , and S
� are the positive, negative

and test scores, respectively.
DyS (Binary): Distribution y-Similarity (DyS) [18] is a framework of mixture

models method for binary quantification, based on HDy, that supports the
use of di↵erent distance measures besides HD.

ED (Multi-Class): Similar to HDx, Energy Distance Minimization (ED) uses
the actual features of the input space to model the distributions. But instead
of HD, ED tries to minimize the Energy distance measure as described in [17].

Readme (Multi-class): Readme [15] is similar to HDx, as it also operates di-
rectly over features instead of using a classifier. Readme models the feature
distribution by counting co-occurrences. Thus, for continuous attributes, this
method requires feature discretization. Only a subset is used in an optimiza-
tion problem solved by general least-squares regression.

EMQ (Multi-class): The Expectation-Maximization Quantifier (EMQ) [27]
uses the well-known Expectation-Maximization (EM) algorithm to adjust
the output of probabilistic classifiers for changes in the class distribution.

3.3 Adaptations of Classification Algorithms

is a class of methods that adapt an existing classification algorithm to quantifi-
cation.

QT and QT-ACC (Multi-Class/Binary): Quantification trees (QT) [20] is
a quantification method based on a decision tree algorithm. The main di↵er-
ence between QT and classification trees is the node-splitting criterion. QT
employs a criterion suitable for the quantification task instead of a measure
based on information theory used for classification tasks. QT-ACC is similar
to QT with the additional application of the ACC correction (Equation 1).
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PWK (Multi-class): The Proportion-Weighted k-Nearest Neighbor algorithm
(PWK) [2] is an adaptation of the k-Nearest Neighbor (NN) algorithm to
quantification using a weighting scheme which applies less weight on neigh-
bors from the majority class.

CDE (Binary): The Class Distribution Estimation (CDE) [30] applies the
cost-sensitive classification principle to update the classifier according to
the class distribution change between the training and test sets. CDE is an
iterative algorithm that re-trains the classifier according to the cost ratio cal-
culated using the distribution mismatch ratio with the previous iteration’s
estimate.

SVM-Q and SVM-K (Binary): These methods use the SVM-perf implemen-
tation of Support Vector Machines (SVM) optimized for multivariate loss
functions [16]. SVM-Q uses the Q-measure [1], and SVM-K uses the Kullback-
Leibler Divergence [5].

3.4 Ensembles for quantification.

An ensemble is a set of individually trained models whose predictions are com-
bined to forecast novel instances, often providing more accurate results than
their base models [23].

Ensembles are extremely common in classification, but quantification has not
dedicated much attention to this research venue. To the best of our knowledge,
the use of ensembles in quantification is restricted to two articles [25, 26].

In these papers, the authors explore the drift in p(y) as a factor to gener-
ate diversity for the base classifiers. Therefore, they propose to train each base
classifier using a di↵erent class prevalence. They sample the dataset using ran-
dom sampling with replacement to vary p(y) while ensuring that p(x|y) remains
constant, a common assumption in quantification learning. The proposal uses
the same pair of base classifier and quantifier for all samples and aggregates the
individual predictions in a final predicted class prevalence.

We refer to this method as the class-prevalence ensemble (CPE) to avoid
confusion with the approach proposed in this paper.

4 Multi-class Quantification

Forman [9] was the first to advocate using OVA for multi-class problems. An OVA
quantifier performs independent binary quantifications for each class versus all
others and then normalizes the final estimates to sum to 100%.

More recently, Schumacher et al. [28] have assessed 29 existing binary and
multi-class quantifiers in a comprehensive evaluation involving 40 datasets. They
conclude that binary quantifiers allied with OVA “showed mediocre performance
in the multi-class case.”

What is intriguing here is why this is the case and which factors can make an
accurate binary quantifier inaccurate for a multi-class problem transformed into
a binary-class dataset with OVA. Schumacher et al. [28] hypothesize that the
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issue comes with the OVA normalization step. This section demonstrates that
the OVA quantifiers perform poorly in multi-class settings due to a change in
p(x|y).

We o↵er an intuitive explanation for the OVA issues using an example. Sup-
pose we have a multi-class problem with only three classes with red, green, and
blue labels. Blue is chosen as the positive (�) class during one of the OVA ex-
ecutions, while red and green receive the negative label ( ) (see Figure 1). As
we have a quantification problem, we expect the prevalence of red and green
classes to vary independently, i.e., reds’ prevalence can increase while greens’
decreases and vice-versa. However, as the OVA quantifier sees the instances of
these two classes as a single negative class, these prevalence drifts lead to a
change in p(x|y). An intuitive way to realize this is to notice that an increase in
reds’ prevalence leads to a more complex separation of the positive and negative
classes since the red class is closer to the blue class. In contrast, increasing green
prevalence leads to an easier separation.

Fig. 1. A hypothetical three-class dataset (a) transformed into a binary-class problem
(b) with class blue as positive. The change in the prevalence of the classes red and
green causes a concept drift in p(x|y =  ), making the binary classes harder (c) or
easier (d) to discriminate.

Suppose we characterize quantification as a Y ! X problem [6]. The joint
probability distribution is factored as p(x, y) = p(x|y)p(y). We expect that the
class distribution, p(y), will change, as this is the primary motivation of the
quantification. However, the quantification literature assumes that the condi-
tional distribution p(x|y) remains constant. For instance, classify, count and
adjust methods estimate the class errors (p(hc(S) = n|y = i)) on the training
set, and the distribution matching methods try to model p(S|y) or p(hs(S)|y)
using an approximation with training data.
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A change in p(x|y) and p(y) for Y ! X problems is hardly addressed in the
literature, as this problem is so complex it is considered impossible to solve [21].
Therefore, OVA quantification approaches are doomed to underperform, as ob-
served in the literature [28].

5 Proposed Approach

This section presents an ensemble method that is our main technical contribu-
tion. We start discussing our main requirements:

Multi-class As we have discussed in Section 4, a binary-class method will not
perform well on multi-class problems. Thus, the solution must be intrinsically
multi-class since it will naturally apply to any number of labels.

Accurate One of the conclusions of experimental comparisons such as [28] is
that multi-class quantification is a di�cult problem, as both OVA and multi-
class quantifiers perform poorly. Thus, we look for a significantly more ac-
curate solution than current single and ensemble methods.

Simple The method must be simple as our primary motivation is to demon-
strate the limitation of the current OVA approach and the directions for
future research in multi-class quantification. We hope the community will
further develop these ensemble approaches by looking for more complex (and
hopefully accurate) variations.

Hyperparameter-free Our approaches must not add new hyperparameters
beyond those inherited from the base classifiers and quantifiers. Our perfor-
mance improvement should not originate from an extensive hyperparameter
search.

Figure 2 illustrates our proposal. It consists of an ensemble of n pairs of
classifier and quantifier. We vary the base classifier to provide diversity and fix
the base quantifier. Therefore, we name our approach multiple-classifier, single-
quantifier, or MC-SQ.

We set the number of pairs of classifier-quantifier as seven to eliminate pa-
rameters. We employ the following classifiers in our experiments: Random For-
est (RF), Nave Bayes (NB), Gradient Boosting (GB), Support Vector Machines
(SVM)3, Linear Discriminant Analysis (LDA), Light Gradient Boosting Ma-
chines (LGBM), and Logistic Regression (LR). The motivation for selecting
those algorithms is that they represent di↵erent learning paradigms and are
often shortlisted as the most successful approaches in Machine Learning.

Finally, in our experiments, we employ the quantifiers EMQ, FM, GACC and
GPACC as these were shortlisted as the best performing multi-class quantifiers
in [28]. We provide further details in the next section.

3 The SVM implementation in sklearn [24] uses one-versus-one to implement multi-
class classifiers. This does not impact our ensembles; they only use the scores these
classifiers provide.
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Fig. 2. Schematic of the proposed Multi-Classifier, Single-Quantifier ensemble ap-
proach.

6 Experimental Evaluation

This section details the experimental setup and assessment results. We include
some ablation studies that provide insights into our method’s design decisions.

6.1 Experimental Setup.

We are strongly committed to reproducible research. Therefore, we decided to
use the same experimental design as [28], allowing direct comparison with those
results. For the base quantifiers, we use the implementation provided in their
paper4. Also, we created a paper website to store code, figures, tables, and
detailed results perpetually5

We compare the results obtained by our ensemble methods with the single
quantifiers and the class-prevalence ensembles from [26]. We use the ensemble

4 The only exception is the HDy method which we found to di↵er significantly from
the method described in [13]. In this case, we use our implementation.

5
https://sites.google.com/view/mc-sq.

https://sites.google.com/view/mc-sq
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implementation provided in QuaPy [22]. As suggested in [22], we produce 50
di↵erent training samples with various distributions and apply Linear Regression
as the base classifier to get scores for the 50 samples. A base quantifier is applied
over the scores, producing 50 quantifiers for each class. The predicted prevalence
is the normalized (to sum to 100%) average of the prevalences for each class
label. To generate comparable results, we execute our ensembles and the class-
prevalence ensembles over the same set of base quantifiers.

The experiments involve 40 benchmark datasets, 23 binary and 17 multi-
class. We briefly describe the datasets’ main characteristics on the paper’s web-
site. We use Absolute Error (AE), Equation 2, as the primary measure to assess
our results. AE has several attractive features. For instance, it is easy to interpret
and restrained in the interval [0, 2] independently of the number of classes [29].

AE(p, p̂) =
1

C

CX

n=1

|p̂n � pn| (2)

The experimental setup follows the Artificial-Prevalence Protocol (APP) [14].
It consists of splitting a classification dataset into training and test sets. The test
set class prevalence is artificially manipulated through sub-sampling, creating
multiple test set samples. The idea is to create test samples with class preva-
lences that di↵er significantly from the training class distribution. We train the
quantifiers with the training set, assess them in each test sample, and report
the average AE across all test sets. We refer to [28] for further details about the
experimental setup.

6.2 Experimental Results.

Table 1 shows the numerical results for the multi-class datasets. The proposed
MC-SQ methods are the best-performing methods. The last row shows the av-
erage performance across all datasets6. MC-SQ provides a tremendous improve-
ment over the base quantifiers: 22% for EM, 38% for GACC, 25% for GPACC,
and 31% for FM.

Figure 3 provides the CD diagram for the results in Table 1. The four pro-
posed ensembles (MC-SQ) occupy the five top-ranking positions. MC-SQ with
the base quantifier FM outperforms with statistical significance all existing quan-
tifiers but its sibling MC-SQ ensembles with GPACC and EM as base quantifiers.

Due to a lack of space, we have presented the numerical results for binary
datasets on the paper’s website. Figure 4 provides the CD diagram for the re-
sults in this table. The comparison involves a total of 34 approaches, as we also
include DyS as a base quantifier for both ensemble approaches. We decided to
include DyS with Tøpsoe distance, which is one of the best-performing binary
quantifiers [28].

6 We understand that computing average AE across datasets can be misleading, but
it is often the only way to compare average performance improvement.
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Table 1. Experimental results for multi-class datasets. Our proposal, the Multiple-
classifier, Single-quantifier (MC-SQ) ensemble, is among the best-performing ap-
proaches.

Single quantifiers Class-Prevalence Ensembles MC-SQ Ensembles
Dataset readme ED CC PWK QF EM GACC GPACC FM EM GACC GPACC FM EM GACC GPACC FM
bike 0.201 0.176 0.368 0.315 0.638 0.082 0.113 0.073 0.102 0.117 0.101 0.096 0.104 0.096 0.068 0.059 0.065
blog 0.180 0.290 0.588 0.422 0.547 0.196 0.360 0.236 0.285 0.256 0.238 0.249 0.264 0.167 0.173 0.115 0.122
conc 0.432 0.457 0.915 0.480 0.662 0.498 0.486 0.473 0.510 0.410 0.407 0.381 0.389 0.256 0.275 0.266 0.245
cond 0.129 0.093 0.343 0.213 0.431 0.059 0.155 0.066 0.088 0.085 0.078 0.064 0.074 0.054 0.054 0.045 0.047
contra 0.424 0.434 0.833 0.572 0.675 0.396 0.600 0.515 0.512 0.409 0.468 0.411 0.402 0.391 0.470 0.424 0.419
craft 0.412 0.274 0.752 0.442 0.763 0.191 0.296 0.190 0.190 0.271 0.264 0.206 0.218 0.225 0.186 0.168 0.156
diam 0.117 0.209 0.784 0.404 0.501 0.214 0.197 0.098 0.118 0.183 0.196 0.110 0.100 0.042 0.029 0.027 0.027
drugs 0.338 0.238 0.465 0.407 0.600 0.218 0.256 0.199 0.181 0.229 0.250 0.252 0.259 0.204 0.206 0.181 0.163
ener 0.331 0.169 0.879 0.439 0.925 0.131 0.273 0.115 0.129 0.161 0.225 0.120 0.130 0.158 0.108 0.084 0.084
fifa 0.221 0.278 0.481 0.384 0.432 0.127 0.313 0.181 0.216 0.198 0.182 0.202 0.211 0.117 0.145 0.111 0.104
news 0.446 0.245 0.827 0.471 0.917 0.221 0.498 0.335 0.376 0.246 0.288 0.249 0.238 0.260 0.325 0.261 0.268
nurse 0.263 0.049 0.138 0.213 0.399 0.022 0.023 0.019 0.020 0.027 0.016 0.017 0.018 0.015 0.011 0.013 0.009
thrm 0.471 0.470 1.042 0.511 0.827 0.494 0.780 0.629 0.663 0.323 0.409 0.337 0.382 0.330 0.344 0.321 0.302
turk 0.489 0.356 0.976 0.622 0.834 0.277 0.525 0.342 0.392 0.365 0.402 0.338 0.348 0.432 0.408 0.315 0.339
vgame 0.364 0.424 0.590 0.418 0.589 0.322 0.520 0.460 0.474 0.375 0.358 0.364 0.371 0.315 0.397 0.391 0.358
wine 0.428 0.440 0.965 0.496 0.613 0.757 0.656 0.575 0.605 0.414 0.416 0.371 0.388 0.340 0.440 0.449 0.431
yeast 0.474 0.289 0.878 0.295 0.526 0.613 0.567 0.408 0.413 0.546 0.448 0.401 0.411 0.353 0.450 0.476 0.482
Mean 0.336 0.288 0.696 0.418 0.640 0.284 0.389 0.289 0.310 0.272 0.279 0.245 0.253 0.221 0.241 0.218 0.213

Similarly to the multi-class case, MC-SQ with FM quantifier is also the best
quantifier for binary datasets. The CD diagram shows that MC-SQ with FM
outperforms all existing quantifiers but the Median Sweep (MS) with a signifi-
cant statistical di↵erence. These results are evidence of the performance of the
ensemble approaches for quantification, as the MS algorithm can be framed as
an ensemble approach.

6.3 Ablation Study: Number of Base Classifiers.

A relevant parameter for our ensembles is the number of base classifier-quantifier
pairs. In our experimental results, we fixed this number to seven. However, it is
unclear if we could improve performance using a di↵erent number of pairs.

We executed experiments with all possible combinations of the number of
classifiers and averaged the results, grouping them by the number of base clas-
sifiers. Figure 5 shows the CD diagram for this experiment. The ensembles with
seven classifiers obtain the best results but with diminishing returns and no
statistically significant di↵erence compared to six base pairs.

6.4 Case Study: The LeQua2022 Competition.

Recently, Esuli, Moreo and Sebastiani [4] organized the LeQua 2022 competition
for quantification learning. The competition released a large dataset of product
reviews from Amazon.

The competition was organized into four streams: T1-A and B released tab-
ular datasets consisting of binary and multi-class problems. Similarly, T2-A and
B released textual binary and multi-class datasets. In this section, we focus on
the T1-B task as we do not want the feature extraction methods to influence the
methods’ performance. We are primarily interested in multi-class quantification.
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Fig. 3. CD diagram for multi-class datasets.

The released dataset has 28 classes with 20,000 training instances, and the
competitors also had access to 1,000 development samples of 1,000 examples
each. Finally, all methods were assessed in a hidden test set consisting of 5,000
test samples of 1,000 examples each.

Our methods use the default parameters. We assessed our ensembles with
four base quantifiers: EM, FM, GACC and GPACC, using the development set
and chose the best-performing one, GPACC as our representative. Finally, we
assessed MC-SQ GPACC in the test set. Table 2 summarizes the results, with
our proposal ranked first.

The competition uses Relative Absolute Error (RAE) as the main assessment
criterion. RAE is defined as:

RAE(p, p̂) =
1

C

CX

n=1

|p̂n � pn|
pn

7 Conclusion and Future Work

In this paper, for the first time, we clarified the shortcomings of OVA quan-
tification approaches in a multi-class context. We concluded that using OVA
causes a distribution shift in p(x|y), which contradicts a common assumption of
quantification methods.

We proposed an accurate multi-class ensemble method for quantification
that naturally works for binary and multi-class problems. MC-SQ is a simple
and parameter-free ensemble method that uses seven classifiers and the same
base quantifier. We investigated its performance through extensive experiments
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Fig. 4. CD diagram for binary datasets.

showing that MC-SQ is the best-performing quantifier for binary and multi-class
problems.

In future work, we plan to investigate other ensemble variations, such as
methods that use more than one quantification approach.
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Fig. 5. CD diagram for the number of classifier-quantifier pairs.
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Table 2. Results of LeQua2022 Task T1B, including our proposal MC-SQ GPACC
ranked first.

Methods RAE
MC-SQ GPACC 0.861
UniDortmund 0.880
UniOviedo(Team1) 0.884
UniOviedo(Team2) 1.114
KULeuven 1.178
SLD 1.182
PACC 1.305
ACC 1.421
CC 1.894
PCC 2.265
MLPE 4.577
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