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Abstract. While many quantification methods have been proposed in
the past for binary problems and, to a lesser extent, single-label mul-
ticlass problems, the multi-label setting (i.e., the scenario in which the
classes of interest are not mutually exclusive) remains by and large unex-
plored. A straightforward solution to the multi-label quantification prob-
lem could simply consist of recasting the problem as a set of independent
binary quantification problems. Such a solution is simple but naïve, since
the independence assumption upon which it rests is, in most cases, not
satisfied. In these cases, knowing the relative frequency of one class could
be of help in determining the prevalence of other related classes. We pro-
pose the first truly multi-label quantification methods, i.e., methods for
inferring estimators of class prevalence values that strive to leverage the
stochastic dependencies among the classes of interest in order to predict
their relative frequencies more accurately. We show empirical evidence
that natively multi-label solutions outperform the naïve approaches by
a large margin.

1 Introduction

One important setting which remains to a large extent unexplored in the quan-
tification literature is multi-label quantification (MLQ), the scenario in which
every datapoint may belong to zero, one, or several classes at the same time; in
this paper we set out to analyze MLQ systematically.

We start by noting that, since quantification systems are expected to be
robust to prior probability shift, we need to test them against datasets exhibit-
ing substantial amounts of shift. Our first contribution is the first experimental
protocol specifically designed for multi-label quantification, a protocol that guar-
antees that the data MLQ systems are tested against do comply with the above
desideratum.

We carry on by noting that a trivial solution for MLQ could simply con-
sist of training one independent binary quantifier for each of the classes in the
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codeframe. However, such a solution is arguably a “naïve” one, as it assumes the
classes to be independent of each other, and thus does not attempt to leverage the
class-class correlations, i.e., the stochastic dependencies that may exist among
different classes. We show empirical evidence that multi-label quantifiers built
according to this naïve intuition yield suboptimal performance, and that this
happens independently of the method used for training the binary quantifiers.

We then move on to studying different possible strategies for tackling MLQ,
and subdivide these strategies in four groups, based on their way of address-
ing (if at all) the multi-label nature of the problem. While the first two groups
can be instantiated by using already available techniques, the other two cannot,
since this would require “aggregation” techniques (see Section 4) that leverage
the stochastic relations between classes, and no such method has been proposed
before. We indeed propose two such methods, called RQ and LPQ. Extensive
experiments that we have carried out using 15 publicly available datasets show
that, when working in combination with a classifier that itself leverages the
above-mentioned stochastic relations, LPQ and (especially) RQ outperform all
other MLQ techniques. The code to reproduce all our experiments is available at
https://github.com/manuel-francisco/quapy-ml/. An extended version of
this paper, available at https://dl.acm.org/doi/10.1145/3606264 and forth-
coming as (Moreo et al., 2024), reports all the experimental results, that we here
omit for reasons of space.

2 Notation and Definitions

In this paper we use the following notation. By x we indicate a datapoint drawn
from a domain X of datapoints, while by y we indicate a class drawn from a
finite, predefined set of classes (also known as a codeframe) Y = {y1, ..., yn}, with
n the number of classes of interest. Symbol � denotes a sample, i.e., a non-empty
set of (labelled or unlabelled) datapoints drawn from X . By p�(y) we indicate
the true prevalence of class y in sample �, by p̂�(y) we indicate an estimate of
this prevalence, and by p̂q�(y) we indicate the estimate of this prevalence obtained
by means of quantification method q. We will denote by p = (p1, . . . , pn) a real-
valued vector. When p is a vector of class prevalence values, then pi is short for
p�(yi).

We first formalize the SLQ problem (Section 2.1) and then propose a defini-
tion of the MLQ problem (Section 2.2).

2.1 Single-Label Codeframes

In single-label problems, each datapoint x belongs to one and only one class in
Y. We denote a datapoint with its true class label as a pair (x, y), indicating
that y 2 Y is the true label of x 2 X . We represent a set of k datapoints as
{(x(i), y(i))ki=1 : x(i) 2 X , y(i) 2 Y}. By L we denote a collection of labelled
datapoints, that we typically use as a training set, while by U we denote a
collection of unlabelled datapoints, that we typically use for testing purposes.
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We define a single-label hard classifier as a function h : X ! Y i.e., a pre-
dictor of the class attributed to a datapoint. We will instead take a single-label
soft classifier to be a function s : X ! �n�1 with �n�1 the unit (n-1)-simplex
(aka probability simplex or standard simplex ) defined as �n�1 = {(p1, . . . , pn) |
pi 2 [0, 1],

Pn
i=1 pi = 1} i.e., as the domain of all vectors representing prob-

ability distributions over Y. We define a single-label quantifier as a function
q : 2X ! �n�1 i.e., a function mapping samples drawn from X into probability
distributions over Y.

Note that, despite the fact that the codomains of soft classifiers and quan-
tifiers are the same, in the former case the i-th component of s(x) denotes the
posterior probability Pr(yi|x), i.e., the probability that x belongs to class yi as
estimated by s, while in the latter case it denotes the class prevalence value
p�(yi) as estimated by q.

By d(p, p̂) we denote an evaluation measure for SLQ; these measures are
typically divergences, i.e., functions that measure the amount of discrepancy be-
tween two probability distributions. Everything we say for single-label problems
applies to the binary case as well, since the latter is the special case of the former
in which n = 2, with one class typically acting as the “positive class”, and the
other as the “negative class”.

2.2 Multi-Label Codeframes

In multi-label problems each datapoint x can belong to zero, one, or more than
one class in Y; as a result, the sum

Pn
i=1 pi may be different from 1. We denote

a datapoint with its true labels as a pair (x, Y ), in which Y ✓ Y is the set
of true labels assigned to x 2 X . A multi-label collection with k datapoints is
represented as {(x(i), Y (i))ki=1 : x(i) 2 X , Y (i) ✓ Y}. We define a multi-label hard
classifier as a function h : X ! 2Y i.e., as a classifier that can assign zero,
one, or more than one label to each datapoint, while we define a multi-label soft
classifier as a function s : X ! [0, 1]n Note that, unlike in the single-label case,
the codomain of function s is not a probability simplex, since the sum

Pn
i=1 pi

may be different from 1, but the set of all real-valued vectors (p1, . . . , pn) such
that pi 2 [0, 1].

We define a multi-label quantifier as a function q : 2X ! [0, 1]n i.e., a func-
tion mapping samples from X into vectors of n class prevalence values, where,
differently from the single-label multiclass case, the class prevalence values in a
vector do not need to sum up to 1.

3 An Evaluation Protocol for Testing Multi-Label
Quantifiers

For the evaluation of quantifiers, researchers often use the same datasets that
are elsewhere used for testing classifiers. On one hand this looks natural, be-
cause both classification and quantification deal with datapoints that belong to
classes in a given codeframe. On the other hand this looks problematic, since
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classification deals with estimating class labels for individual datapoints while
quantification deals with estimating class prevalence values for samples (sets)
of such datapoints. Simply estimating the accuracy of a quantifier on the entire
test set of a dataset used for classification purposes (hereafter: a “classification
dataset”) would not be enough, since this would be a single prediction only,
which would be akin to testing a classifier on a single datapoint only. As a re-
sult, it is customary to generate a dataset to be used for quantification purposes
(a “quantification dataset”) from a classification dataset by extracting from the
test set of the latter a number of samples than will form the test set of the
quantification dataset. Exactly how these samples are extracted is specified by
an evaluation protocol. Different evaluation protocols for the binary case (Esuli
and Sebastiani, 2015; Forman, 2005), for the single-label multiclass case (Esuli
et al., 2022), and for the ordinal case (Bunse et al., 2022), have been proposed
in the quantification literature.

For the binary case, the most widely adopted protocol is the so-called artifi-
cial prevalence protocol (APP) (Forman, 2005). The APP consists of extracting,
from a set of test datapoints, many samples at controlled prevalence values. The
APP takes four parameters as input: the unlabelled collection U , the sample size
k, the number of samples m to draw for each predefined vector of prevalence val-
ues, and a grid of prevalence values g (e.g., g = (0.0, 0.1, . . . , 0.9, 1.0)). We then
generate all the vectors p = (p(�), p( )) of n = 2 prevalence values consisting
of combinations of values from the grid g that represent valid distributions (i.e.,
such that the elements in p sum up to 1). For each such prevalence vector, we
then draw m different samples of k elements each, which become the elements of
our test set. The APP thus confronts the quantifier with samples characterized
by class prevalence values very different from the ones seen during training, and
can thus test the robustness of the quantifiers to the presence of prior proba-
bility shift. This protocol is, by far, the most popular one in the quantification
literature (see, e.g., (Card and Smith, 2018; Esuli et al., 2018; Fernandes Vaz
et al., 2019; Forman, 2005; Maletzke et al., 2019; Moreira dos Reis et al., 2018;
Moreo and Sebastiani, 2022; Pérez-Gállego et al., 2019, 2017; Schumacher et al.,
2021)).

For the single-label multiclass case (which is the closest to our concerns)
the APP needs to take a slightly different form, since the number of vectors
p = (p(y1), ..., p(yn)) representing valid distributions for arbitrary n is combina-
torially high, for any reasonable grid of class prevalence values. As a solution,
one can generate a number of random points on the probability simplex, without
constraining the individual class prevalence values to lie on a predetermined grid;
when this number is high enough, it probabilistically covers the entire spectrum
of valid combinations.

However, even this form of the APP is not directly applicable to the multi-
label scenario, because in this latter the class prevalence values in a valid vector
do not necessarily sum up to 1. One could attempt to simply treat the multi-
label problem as a set of independent binary problems, and then apply the
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APP independently to each of the classes. Unfortunately, such a solution is
impractical, for at least three reasons:

– The first reason is that the number of samples thus generated is exponential
in n, since there are m|g|n such combinations. Note that n (the number of
classes in the codeframe) cannot be set at will since it is fixed, and thus, in
order to keep the number of combinations tractable in cases in which n is
large (in our experiments we use datasets with up to n = 983 classes), one
would be compelled to set m = 1 and choose a very coarse grid g of values
(this would anyway prove insufficient when dealing with large codeframes).

– The second and perhaps most problematic reason is that, in any case, many
of the combinations are not even realisable. That is, there may be prevalence
vectors for which no sample could be drawn at all. To see why, assume
that, among others, we have classes y1, y2, y3 in our codeframe, and assume
that in our test set U , every time a datapoint is labelled with y1 it is also
labelled with either y2 or y3 but not both. This means that all samples � for
which prevalence values p�(y1) 6= (p�(y2)+ p�(y3)) are requested, cannot be
generated.

– Yet another reason why applying the APP would be, in any case, undesirable,
is that the classes in most multi-label datasets typically follow a power-
law distribution, i.e., there are few very popular classes and a long tail of
many rare, or extremely rare, classes. The APP will sometimes impose high
prevalence values for classes that in reality are very rare, which means that
the sampling must be carried out with replacement ; this would generate
samples consisting of many replicas of the same few datapoints, which is
clearly undesirable.

For all these reasons we have designed a brand new protocol for MLQ, that we
call ML-APP, since it is an adaptation of the APP to multi-label datasets. The
protocol amounts to performing multiple rounds of the APP, each targeting a
specific class, but with the range of prevalence values explored for each class being
limited by the amount of available positive examples. This allows all samples to
be drawn without replacement. In each round, a class yi is actively sampled at
controlled prevalence values while the prevalence values for the remaining classes
are not predetermined.

The ML-APP covers the entire spectrum of class prevalence values, by draw-
ing without replacement, for every single class. This means that, for large enough
classes, there will be samples for which the prevalence of the class exhibits a
large prior probability shift with respect to the training prevalence, while for
rare classes the amount of shift will be limited by the availability of positive
examples. Note that, when actively sampling a class yi, any other class yj will
co-occur with it with a probability that depends on the correlation between yi
and yj . For cases in which the class yi being sampled is completely independent
of the class yj , the samples generated will display a class prevalence for yj that
is approximately similar to the prevalence of yj in U . In other words, samples
generated via the ML-APP have a desirable property, i.e., they preserve the
stochastic correlations between the classes while also exhibiting widely varying
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degrees of prior probability shift. Finally, note that the total number of samples
that can be generated via the ML-APP can vary from dataset to dataset (even
if they have the same number of classes), and depends on the actual number of
positive instances for each class that are contained in the dataset. In any case,
the maximum number of samples that can be generated via the ML-APP is
bounded by mn|g|.

4 Performing Multi-Label Quantification

In this section we present the multi-label quantification methods that we will
experimentally compare in Section 5. Throughout this paper we will focus on
aggregative quantification methods, i.e., methods that require all unlabelled dat-
apoints to be classified (by a hard or a soft classifier, depending on the method)
as an intermediate step, and that aggregate the individual (hard or soft) predic-
tions in some way to generate the class prevalence estimates. The reason why we
focus on aggregative methods is that they are by far the most popular quantifica-
tion methods in the literature, and that this focus allows us an easier exposition.
We will later show how the most interesting intuitions for performing MLQ that
we discuss in this paper also apply to the non-aggregative case.

4.1 Multi-Label Quantification

In this paper we will describe and compare many different (aggregative) MLQ
methods. In order to better assess their relative merits, we subdivide them into
four different groups, depending on whether the correlations between different
classes are exploited in the classification phase (i.e., by the classifier which pro-
vides input to an aggregative quantifier), or in the aggregation phase (i.e., in the
phase in which the individual predictions are aggregated), or in both phases, or
in neither of the two phases.

The first and simplest such group is that of MLQ methods that treat each
class as completely independent, and thus solve n independent binary quantifica-
tion problems. We call such an approach BC+BA (“binary classification followed
by binary aggregation”), since in both the classification phase and the aggrega-
tion phase we treat the multi-label task as n independent binary tasks; we thus
disregard, in both phases, the correlations among classes when predicting their
class prevalence values. This is similar to the binary relevance (BR) problem
transformation for classification, and consists of transforming the multi-label
dataset L into a set of binary datasets L1, . . . , Ln in which Li = {(x,1[yi 2 Y ]) :
(x, Y ) 2 L} is labelled according to Yi = {0,1}, since the datapoints are rela-
belled using the indicator function 1[z] that returns 1 (the minority class) if z is
true or 0 (the majority class) otherwise. BC+BA methods then train one quan-
tifier qi for each training set Li. At inference time, the prevalence vector for a
given sample � is computed as pBC+BA

� = (pq1� (1), pq2� (1), . . . , pqn� (1)). Although
this is technically a multi-label quantification method, BC+BA is actually the
trivial solution that we expect any truly multi-label quantifier to beat.
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A second, less trivial group is that of MLQ methods based on the use of
binary aggregative quantifiers that receive input from (truly) multi-label classi-
fiers. Methods in this group consist of n independent binary aggregative quanti-
fiers that rely on the (hard or soft) predictions returned by a classifier natively
designed to tackle the multi-label problem. Each binary quantifier takes into
account only the predictions for its associated class, disregarding the predictions
for the other classes. This represents a straightforward solution to the MLQ
problem, as it simply combines already existing technologies (binary aggregative
quantifiers built via off-the-shelf methods and (truly) multi-label classifiers built
via off-the-shelf methods). In such a setting, the classification stage is influenced
by the class-class correlations, but the quantification methods in charge of pro-
ducing the class prevalence estimates for each class do not pay attention to any
such correlation, and are disconnected from each other. Since methods in this
group will consist of a (truly) multi-label classification phase followed by a binary
quantification phase, we will refer to this group of methods as MLC+BA.

We next propose a third group of MLQ systems, i.e., ones consisting of na-
tively multi-label quantification methods that receive ad input the outputs of n
independent binary classifiers. Methods like these represent a non-trivial novel
solution for the field of quantification, because no natively multi-label quan-
tification method has been proposed so far in the literature; in Section 4.1.1
we propose some such methods. In order to clearly evaluate the merits of such
a multi-label aggregation phase, as the underlying classifiers we use indepen-
dent binary classifiers only. For this reason, we will call this group of methods
BC+MLA.

The methods in the fourth and last group that we consider consist of com-
binations of a (truly) multi-label classification method and a (truly) multi-label
quantification method among our newly proposed ones; this allows to exploit the
class dependencies both at the classification stage and at the aggregation stage.
We call this group of methods MLC+MLA.

Figure 1 illustrates in diagrammatic form the four types of multi-label quan-
tification methods we study in this paper. In order to generate members of these
four classes, we already have off-the-shelf components for implementing the bi-
nary classification, multi-label classification, and binary aggregation phases, but
we have no known method from the literature to implement multi-label aggre-
gation; Sections 4.1.1 and 4.1.2 are devoted to proposing two novel methods of
this type.

4.1.1 Exploiting Class-Class Correlations at the Aggregation Stage
by means of Regression Let us assume we have a multi-label quantifier q
of type BC+BA or MLC+BA. Our idea is to detect how quantifier q fails in
capturing the correlations between classes, and to correct q accordingly. This is
somehow similar to the type of correction implemented in ACC (with respect to
CC) and PACC (with respect to PCC). However, we will formalize this intuition
as a general regression problem, thus not necessarily assuming this correction to
be linear (as ACC and PACC instead do).
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Fig. 1. The four groups of multi-label quantification methods. Dotted lines connecting
class labels with a model (classifier or quantifier) indicate that the model learns from (or
has access to) the class labels of the training datapoints. Solid lines connecting classifiers
with quantifiers indicate a transfer of outputs from the classifier to the quantifier. With
a slight deviation from our notation, here h denotes any classifier, hard or soft.

Roughly speaking, the idea that underlies our method is that of learning a
regression function r : Rn ! Rn that takes as input the vector of prevalence val-
ues as estimated by q, and returns a vector of corrected prevalence values. More
concretely, we split our training set L into two parts, LQ (that we use for training
our quantifier q) and LR (that we use for training a regressor r i.e., a function
r : Rn ! Rn).1 We then use the ML-APP protocol described in Section 3 to
extract, from set LR, a new training set R = {�i ⇠ ML-APP(LR, k,m,g)} of l
samples, where k (sample size), m (number of samples to draw for each preva-
lence value on the grid), and g (grid of prevalence values) are the parameters of
the ML-APP protocol.

Having done this, we first train our quantifier q on LQ. Note that, since
q is a multi-label quantifier, it is a function that, given a sample �, returns a
vector p̂q

� of n class prevalence values, not necessarily summing up to 1. We then
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apply q to all the samples in our newly created dataset R. As a result, for each
sample �i 2 R, we haveobtain a pair (p̂q

�i
,p�i), where p̂q

�i
is the vector of the n

prevalence values estimated by q, and p�i is the vector of the n true prevalence
values. We use this set of l pairs as the training set for training a multi-output
regressor r : Rn ! Rn that takes as input a vector of n “uncorrected” prevalence
values (i.e., values generated without exploiting the class-class correlations) and
returns a vector of n “corrected” prevalence values (i.e., values generated by
exploiting the class-class correlations); for training the regressor we can use any
off-the-shelf multi-output regression algorithm. Note that the regressor indeed
captures the correlations between classes, since it receives as input, for each
sample, the class prevalence estimates for all the n classes.2

At inference time, given an (unlabelled) sample �, we first obtain a prelim-
inary estimate of the class prevalence values p̂q

� by means of q, and then apply
the correction learned by the regressor r, thus computing p̂r

� = r(p̂q
�). We then

normalize, by means of clipping,3 every prevalence value in p̂r
� so that it falls in

the [0, 1] interval, and return the estimate.
As noted above, the regressor exploits the class-class correlations during the

aggregation phase. This means that, according to the subdivision of MLQ meth-
ods illustrated in Table 1, the addition of a regression layer on top of an existing
quantifier q has the effect of transforming a BC+BA method into a BC+MLA
method, or of transforming a MLC+BA method into a MLC+MLA method.

4.1.2 Exploiting Class-Class Correlations at the Aggregation Stage
by means of Label Powersets We investigate an alternative way of modelling
class-class correlations at the quantification level, this time by gaining inspiration
from label powersets (LPs – see (Spolaôr et al., 2013)) and the heuristics for
making their application tractable.

LP is a problem transformation technique devised for transforming any multi-
label classification problem into a single-label one by replacing the original code-
frame with another one that encodes subsets of this codeframe into “synthetic”
classes. This problem transformation is directly applicable to the case of quantifi-
cation as well. Of course, the combinatorial explosion of the number of synthetic
classes has to be controlled somehow but, fortunately enough, the same heuristics
investigated for MLC can come to the rescue.

Our method (which we here call LPQ, for “label powerset -based quantification”)
consists of generating, by means of any existing clustering algorithm, a set C of
(non-overlapping) clusters consisting of few classes each, before applying the LP
strategy, so that the number of possible synthetic classes remains under reason-
able bounds. For example, if our codeframe has n = 100 classes, extracting 25
clusters of 4 classes each results in the maximum possible number of synthetic
classes being 25 · 24 = 400, which is much smaller than the original 2100. We
perform this clustering by treating classes in Y as instances and training data-
points as features, so that a class is represented by a binary vector of datapoints,
where 1 indicates that the datapoint belongs to the class and 0 that it does not.
The clustering algorithm is thus expected to put classes displaying similar as-
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signment patterns (i.e., classes that tend to label the same documents) in the
same cluster.

Once we have performed the clustering, given the subset of classes Yc ✓ Y
contained in each cluster c 2 C, we need to convert the multi-label assignments
into single-label assignments. This amounts to defining a mapping 2Yc ! Y 0

c, so
that, e.g., the set of classes {y1, y5, y6} ✓ Yc corresponds to a new synthetic class
y1:5:6 2 Y 0

c. Once (single) labels have been assigned, we can train a single-label
quantifier. This process is independently carried out for each cluster. codeframe
take the single-label codeframe Y 0

c determined from the 2Y ! Y 0 multi-label-to-
single-label mapping (a mapping that, e.g., would attribute to the set of classes
{y1, y5, y6} ✓ Yc the synthetic class y1:5:6 2 Y 0

c) and train a single-label quantifier
on it; this needs to be repeated for each cluster. At inference time, in order to
provide class prevalence estimates for the classes in Yc from the predictions made
for the classes in Y 0

c by the above-mentioned quantifier, we have to “reverse” the
multi-label-to-single-label mappingassignment. This process is straightforward
since the mapping is bijective. By doing so, we can reconstruct the estimated
prevalence value for class yi 2 Yc as , so that the estimated prevalence value of
yi 2 Yc is the sum of the estimated prevalence values of all labels y0 2 Y 0

c that
involve yi.; performing this for each cluster c 2 C returns prevalence estimates
for all classes yi 2 Y. This process is repeated for each cluster c 2 C in order to
obtain prevalence estimates for all classes yi 2 Y.

More formally, let us define a matrix A that records the label assignment in
cluster c, so that aij = 1 if the set of classes represented by the synthetic class
y0i 2 Y 0

c contains class yj 2 Yc, and aij = 0 if this is not the case. Note that
A has as many rows as there are classes in Y 0

c and as many columns as there
are classes in Yc. Once our single-label quantifier q produces an output p̂q

�, we
only need to compute the product (p̂q

�)
>A to obtain the vector of prevalence

estimates for the classes in Yc. Performing all this for each cluster c 2 C returns
prevalence estimates for all classes yi 2 Y.

In principle, the disadvantage of this method is that it cannot learn the cor-
relations between classes that belong to different clusters. However, the method
is based on the intuition that classes that are indeed correlated tend to end up
in the same cluster, and that the inability to model correlations between classes
that belong to different clusters will be more than compensated by the reduction
in the number of combinations that one needs to take into account.

5 Experiments

In this section we turn to describing the experiments we have carried out in
order to evaluate the performance of the different methods for MLQ that we
have presented in the previous sections. In Section 5.1 we discuss the evaluation
measure we adopt, while in Section 5.2 we describe the datasets on which we
perform our experiments. The results, omitted here for reasons of space, can be
found in the extended version of this paper at https://dl.acm.org/doi/10.
1145/3606264.
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5.1 Evaluation Measures

Any evaluation measure for binary quantification can be easily turned into an
evaluation measure for multi-label quantification, since evaluating a multi-label
quantifier can be done by evaluating how well the prevalence value p(yi) of each
class yi 2 |Y| is approximated by the prediction p̂(yi). As a result, it is natural
to take a standard measure d(p, p̂) for the evaluation of binary quantification,
and turn it into a measure

D(p, p̂) =
1

n

nX

i=1

d((pi, (1� pi)), (p̂i, (1� p̂i))) (1)

for the evaluation of multi-label quantification. (This is exactly what we do
in multi-label classification, in which we take F1, a standard measure for the
evaluation of binary classification, and turn it into macroaveraged F1, which is
the standard measure for the evaluation of multi-label classification.)

The study of evaluation measures for binary (and single-label multiclass)
quantification performed in (Sebastiani, 2020) concludes that the most satisfac-
tory such measures are absolute error and relative absolute error ; these are the
two measures that we are going to use in this paper. In the binary case, absolute
error is defined as

ae(p, p̂) =
|p1 � p̂1|+ |p2 � p̂2|

2

=
|p1 � p̂1|+ |(1� p1)� (1� p̂1)|

2
= |p1 � p̂1|

(2)

which yields the multi-label version

AE(p, p̂) =
1

n

nX

i=1

|pi � p̂i| (3)

In the binary case, relative absolute error is instead defined as

rae(p, p̂) =
1

2

✓
|p1 � p̂1|

p1
+

|p2 � p̂2|
p2

◆

=
1

2

✓
|p1 � p̂1|

p1
+

|(1� p1)� (1� p̂1)|
(1� p1)

◆ (4)

which yields the multi-label version

RAE(p, p̂) =
1

2n

nX

i=1

✓
|pi � p̂i|

pi
+

|(1� pi)� (1� p̂i)|
(1� pi)

◆
(5)

Since RAE is undefined when pi = 0 or pi = 1, we smooth the probability
distributions p and p̂ via additive smoothing; in the binary case, this maps a
distribution p = (pi, (1� pi)) into

s(p) =

✓
✏+ pi
2✏+ 1

,
✏+ (1� pi)

2✏+ 1

◆
(6)
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with ✏ the smoothing factor; following (Forman, 2008), we set ✏ = (2|�|)�1.
In the experiments we describe in Section 5, the trends we observe and the

conclusions we draw for AE hold for RAE as well. In Section 5 we will thus
report our results in terms of AE only, deferring the results in terms of RAE to
(Moreo et al., 2024).

5.2 Datasets

For our experiments we use 15 popular MLC datasets, including 3 datasets
specific to text classification (Reuters-21578,4 Ohsumed (Hersh et al., 1994),
and RCV1-v25), plus all the datasets linked from the scikit-multilearn pack-
age (Szymanski and Kajdanowicz, 2017) with the exception of the RCV1-v2
subsets (we omit them since we already include the much larger collection from
which they were extracted). We refer to the original sources for detailed descrip-
tions of these datasets.6

For the three textual datasets, we apply lowercasing, stop word removal, and
punctuation removal, as implemented in scikit-learn,7 and mask numbers with
a special token. We retain all terms appearing at least 5 times in the training
set, and convert the resulting set of words into (sparse) tfidf-weighted vectors
using scikit-learn’s default vectorizer.8

For all datasets, we remove very rare classes (i.e., those with fewer than 5
training examples) from consideration, since they pose a problem when it comes
to generating validation (i.e., held-out data) sets. Indeed, since we optimize the
hyperparameters for all the methods we use (as explained below), we need val-
idation sets, and it is sometimes impossible to have positive examples for these
classes in both the training and validation sets (let us remember that pure strat-
ification in multi-label datasets is not always achievable, as argued in (Sechidis
et al., 2011; Szymański and Kajdanowicz, 2017)). Note that all this only con-
cerns the training set, and has nothing to do with the test set, which can include
(and indeed includes, for most datasets) extremely rare classes, since removing
classes that are rare in the test set would lead to an unrealistic experimentation.
Note also that removing classes that are rare in the training set is “fair”, i.e.,
equally affects all methods that we experimentally compare, since all of them
involve hyperparameter optimization. Finally, note that, whenever a method re-
quires generating additional (and maybe nested) validation sets, it is inevitably
exposed to the problems mentioned above, and can thus be at a disadvantage
with respect to other methods that do not require additional validation data.
(Moreo et al., 2024) gives a complete description of the datasets we use (after
deleting rare classes), along with some useful statistics proposed in (Read, 2010;
Zhang and Zhou, 2014), and shows the distribution of prevalence values for each
dataset. Note that, in most datasets, this distribution obeys a power law.

We set the parameters of the ML-APP for generating test samples (see Sec-
tion 3) as follows. We fix the sample size to k = 100 in all cases. We set the grid
of prevalence values to g = {0.00, 0.01, . . . , 0.99, 1.00} in all cases but for dataset
Delicious, since in this latter the number of combinations thus generated would
be intractable, given that this is dataset with no fewer than 983 classes; for
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Delicious we use the coarser-grained grid g = {0.00, 0.05, . . . , 0.95, 1.00}. We
set m (the number of samples to be drawn for each prevalence value) indepen-
dently for each dataset, to the smallest number that yields more than 10,000
test samples (m ranges from 1 in Delicious to 40 in Birds).

We break down the results into three groups, each corresponding to a dif-
ferent amount of shift. The rationale behind this choice is to allow for a more
meaningful analysis of the quantifiers’ performance, since the APP (and, by ex-
tension, the ML-APP) has often been the subject of criticism for generating
samples exhibiting degrees of shift that are judged unrealistic and unlikely to
occur in real cases (Esuli and Sebastiani, 2015; Hassan et al., 2021). We instead
believe that general-purpose quantification methods should be tested in widely
varying situations, from low-shift to high-shift ones, and we thus prefer to test
all such scenarios, but split the corresponding results into groups characterized
by of more or less homogeneous amounts of shift.

More specifically, for each test sample generated via the ML-APP, we com-
pute its prior probability shift with respect to the training set in terms of AE
between the vectors of training and test class prevalence values. We then bring
together all the resulting shift values and split the range of such values in three
equally-sized intervals (that we dub low shift, mid shift, and high shift). The
accuracy values we report are thus not averages across the same number of
experiments, since the ML-APP often tends to generate more samples in the
low-shift region than samples in the mid-shift region and (above all) in the high-
shift region. The number of samples, as well as the distribution of shift values,
depends on each dataset.

The results of our experiments are omitted here for reasons of space, and can
be found in the extended version of this paper at https://dl.acm.org/doi/
10.1145/3606264. The results clearly show that there is an ordering BC+BA
�MLC+BA � BC+MLA �MLC+MLA, in which � means “performs worse
than”, which holds, independently of the base quantifier of choice, in almost all
cases. The same experiments also indicate that there is a substantial improve-
ment in performance that derives from simply replacing the binary classifiers
with one multi-label classifier (moving from BC+BA to MLC+BA or from
BC+MLA to MLC+MLA), i.e., from bringing to bear the class-class correla-
tions at the classification stage, and that there is an equally substantial improve-
ment when binary aggregation is replaced by multi-label aggregation (switching
from BC+BA to BC+MLA or from MLC+BA to MLC+MLA), i.e., when
the class-class correlations are exploited at the aggregation stage. What also
emerges from these results is that, consistently with the above observations, the
best-performing group of methods is MLC+MLA, i.e., methods that explicitly
take class dependencies into account both at the classification stage and at the
aggregation stage. Methods that learn from the stochastic correlations among
the classes perform way better than methods that do not, even in the low-shift
regime. Overall, the best-performing method on average is MLC+MLA when
equipped with PCC as the base quantifier.
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6 Conclusions

In this paper we have investigated MLQ, a quantification task which had re-
mained, since the origins of quantification research, essentially unexplored.

The first contribution of this paper is ML-APP, the first protocol for the
evaluation of MLQ systems that is able to confront these systems with samples
that exhibit from low to high levels of prior probability shift while at the same
time preserving the stochastic correlations between the classes.

As a second contribution, we have also described and experimentally com-
pared a number of MLQ methods. For ease of exposition, we have particularly
focused on multi-label quantifiers that work by aggregating predictions for in-
dividual datapoints issued by a classifier (“aggregative” multi-label quantifiers),
and have subdivided them into four groups, based on whether the correlations
between classes are brought to bear in the classification stage (MLC+BA), in
the quantification stage (BC+MLA), in both stages (MLC+MLA), or in nei-
ther of the two stages (BC+BA). Some of these methods (specifically: those
in the BC+BA and MLC+BA groups) are trivial combinations of available
classification and quantification methods, while others (specifically: those in the
BC+MLA and MLC+MLA groups) are non-obvious, and proposed here for the
first time. The thorough experimentation (reported in (Moreo et al., 2024)) that
we have carried out on a large number of datasets has clearly shown that there
is a substantial improvement in performance that derives from simply replacing
binary classifiers with truly multi-label classifiers (i.e., from switching from BC
to MLC), and that there is an equally substantial improvement when binary ag-
gregation is replaced by truly multi-label aggregation (i.e., when switching from
BA to MLA). Consistently with these two intuitions, MLC+MLA methods un-
equivocally prove the best of the lot; of the two MLC+MLA methods we have
proposed, RQ proves clearly superior to LPQ. In the light of this superiority of
MLA with respect to BA, it is also interesting that both RQ and LPQ can be
straightforwardly used in association to non-aggregative quantifiers too.
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