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Abstract. We study the problem of class distribution estimation under
dataset shift. On the training dataset, both features and class labels are
observed while on the test dataset only the features can be observed. The
task then is the estimation of the distribution of the class labels, i.e. the
estimation of the class prior probabilities, in the test dataset. Assump-
tions of invariance between the training joint distribution of features and
labels and the test distribution can considerably facilitate this task. We
discuss the assumptions of covariate shift, factorizable joint shift, and
sparse joint shift and their implications for class distribution estimation.

Keywords: Class prior estimation · quantification · prevalence estima-
tion · dataset shift · distribution shift · covariate shift · factorizable joint
shift · sparse joint shift.

1 Introduction

We consider class distribution estimation against the backdrop of dataset shift
(also called distribution shift) between training and test dataset. On the training
dataset, both features and class labels are observed while on the test dataset
only the features can be observed. In this context, important tasks of interest
are the prediction of the labels (classification) and the estimation of the label
distribution (class distribution estimation) in the test dataset. In the literature,
class distribution estimation is also referred to as class prior estimation, class
prevalence estimation, quantification, and with a number of other terms.

Referring to Forman (2005), Esuli et al. (2023, Preface) made the following
case for class distribution estimation as a research topic of its own: “In a number
of applications involving classification, the final goal is not determining which
class (or classes) individual unlabelled instances belong to, but estimating the
prevalence (or ‘relative frequency’, or ‘prior probability’) of each class in the
unlabelled data.”

Class distribution estimation for the target (test) dataset when its distribu-
tion is allowed to differ from the distribution of the training (source) dataset,
in general, is an ill-posed problem, because joint target (test) distributions of
features and labels whose marginal feature distributions perfectly match the
observed target feature distribution cannot be distinguished. Constraints are
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needed on the range of joint target distributions taken into account for the esti-
mation exercise in order to make the problem well-posed. The consideration of
causality is a popular approach for specifying such constraints. Typically, this
approach leads to making a decision either for prior probability shift (label shift)
or for covariate shift as the model for the joint target distribution (Fawcett and
Flach, 2005).

Other approaches to the problem include

– Assumptions on the evolution of parts of the joint distribution of labels and
features between training and test times (e.g. Zhang et al., 2013; Krempl
et al., 2019).

– Implicit assumptions, for instance by the choice of the distance function for
measuring the difference of the source and the target feature distributions
(e.g. Hofer, 2015; Kirchmeyer et al., 2021).

In this paper, we revisit three approaches to class distribution estimation and,
more generally, to modelling dataset shift under invariance assumptions between
the joint source and target distributions: Covariate shift (Shimodaira, 2000),
factorizable joint shift (FJS, He et al., 2021), and sparse joint shift (SJS, Chen
et al., 2022).

The contribution of this paper to the literature is twofold. On the one hand,
two new approaches to class distribution estimation under covariate shift are
presented. These approaches may prove useful for cross-checking estimates ob-
tained by application of the popular ‘probabilistic classify and count’ approach.
On the other hand, some results on FJS and SJS which were presented in Tasche
(2022b) and Tasche (2023) in uncommon notation are revisited in a notation
more familiar to the machine learning community.

Class distribution estimation under prior probability shift has been receiving
a lot of attention by the research community for at least the last sixty years,
beginning with Gart and Buck (1966) if not earlier. For this reason, in this paper
we do not dive into any detail of prior probability shift. Regarding this topic, we
refer to the recent overviews by González et al. (2017) and Esuli et al. (2023) of
the literature on class distribution estimation under prior probability shift and
the references therein.

This paper is organised as follows:

– Section 2 ‘Notation and general assumptions’ sets the scene in technical
terms for the remainder of the paper.

– Section 3 ‘Types of dataset shift with invariance assumptions’ provides the
formal definitions of the four most important types of distribution shift con-
sidered in more or less detail in the following: Prior probability shift, covari-
ate shift, factorizable joint shift (FJS), and sparse joint shift (SJS).

– Section 4 ‘Covariate shift’ looks at class distribution estimation under co-
variate shift, based on previous work by Card and Smith (2018) and Tasche
(2022a). Eq. (9b) and Proposition 1 are new results.

– Section 5 ‘Factorizable joint shift (FJS)’ revisits the notion of distribution
shift proposed by He et al. (2021). FJS is found to be unsuitable for class
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distribution estimation due to lack of identifiability unless additional con-
straints are applied.

– Section 6 ‘Sparse joint shift (SJS)’ summarises findings of Chen et al. (2022)
and Tasche (2023). Proposition 3 on the ‘conditional confusion matrix ap-
proach’ presents a new interpretation of a result of Tasche (2023). SJS is
shown to be a generalisation of prior probability shift and found to be a
suitable assumption for designing class distribution estimators.

– The paper concludes with a brief assessment of the findings in Section 7.

2 Notation and general assumptions

We adopt notation and assumptions similar to the setting used in Scott (2019):
There are a feature space X (not necessarily with X ⇢ Rd for any fixed d) and

a label space Y = {1, . . . , `} for some integer ` � 2. This is the common machine
learning setting for multinomial classification and class distribution estimation.

As in Scott (2019, Section 1.2), “. . . there are two distributions, P and
Q, referred to as the source and target distributions. We consider the semi-
supervised setting where the learner observes (X1, Y1), . . . , (Xm, Ym) ⇠ P and
Xm+1, . . . , Xm+n ⇠ QX . . .”.

P , Q are probability distributions on X ⇥ Y. P is also called training dis-
tribution, Q test distribution. X is a generic random variable which shows the
features of an object (or instance), Y is a generic random variable showing the
class label of an object. QX stands for the marginal distribution of the features
under the target distribution.

We suppose for the purpose of this paper that the sample sizes m of the
training sample and n of the test sample are sufficiently large if not infinite such
that P and QX can be perfectly inferred and assumed to be known.

Class distribution estimation then may be phrased as the problem of how to
find the marginal distribution QY of the labels (i.e. the class distribution) under
the target distribution, i.e. the prior probabilities Q[Y = 1], . . ., Q[Y = `].

Densities. In the following, we assume that the joint target distribution Q of
features and labels (X,Y ) is absolutely continuous (see Klenke, 2013, Defini-
tion 7.30) with respect to the joint source distribution P of (X,Y ). We also
suppose that p = p(x, y) is a joint density of (X,Y ) under P and q = q(x, y) is
a joint density of (X,Y ) under Q, with respect to some third measure. Absolute
continuity of Q with respect to P is implied in particular if the support of Q is
a subset of the support of P , i.e. if it holds that

q(x, y) > 0 ) p(x, y) > 0. (1)

For the sake of simplying the notation, for the remainder of the paper we assume
that (1) is true.

Under the assumption that (1) holds, define the general importance weight
function w(x, y) for x 2 X and y 2 Y by

w(x, y) =

(
q(x,y)
p(x,y) , for p(x, y) > 0,

0, for p(x, y) = 0.
(2a)
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Function w reflects the change caused by transitioning from source P to target
Q. It can also be interpreted as the density of Q with respect to P on X ⇥ Y.

Besides the full densities p and q also the marginal densities pX , qX of the
feature variable X are of interest:

pX(x) =
X̀

y=1

p(x, y), qX(x) =
X̀

y=1

q(x, y).

The feature densities pX , qX give rise to the feature importance weight function
wX(x) for x 2 X which is defined by

wX(x) =

(
qX(x)
pX(x) , for pX(x) > 0,

0, for pX(x) = 0.
(2b)

Posterior probabilities. We denote the posterior probability (conditional prob-
ability) of class y 2 Y given the feature variable x under the source distribution
P by P [Y = y |X = x]. This is a single number. P [Y = y |X] stands for the
random variable created by sampling x from the feature distribution PX and
evaluating P [Y = y |X = x] at x.
Q[Y = y |X = x] and Q[Y = y |X] respectively denote the corresponding pos-
terior probabilities under the target distribution Q.

Recall also the definition of the class-conditional feature distributions PY=y

and QY=y under the source distribution P and target distribution Q respectively
by

PY=y[X 2 M ] = P [X 2 M |Y = y] =
P [X 2 M,Y = y]

P [Y = y]
,

QY=y[X 2 M ] = Q[X 2 M |Y = y] =
Q[X 2 M,Y = y]

P [Y = y]
,

(3)

for M ⇢ X .

Further notation. In the following, we denote by C = (C1, . . . , C`) hard multi-
nomial classifiers in the sense that

Ci ⇢ X for all i = 1, . . . , `,

C1, . . . , C` is a disjoint decomposition of X , and
Y = y is predicted when X 2 Cy is observed.

(4)

The indicator function 1S of a set S is defined as 1S(s) = 1 for s 2 S and
1S(s) = 0 for s /2 S.

3 Types of dataset shift with invariance assumptions

This section formally introduces the types of dataset shift to be discussed in the
remainder of the paper.
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The dataset shift type denoted here by prior probability shift is also called
label shift, target shift, global drift, or named in other ways in the literature.
Under this type of shift, the class-conditional feature distributions are invariant
between source and target distribution. Its definition is given here mainly as a
point of reference.

Definition 1 (Prior Probability Shift). For each y 2 Y, the class-conditional
feature distributions PY=y[X 2 M ] and QY=y[X 2 M ] for measurable M ⇢ X
as defined by (3) are equal, i.e. it holds that

PY=y[X 2 M ] = QY=y[X 2 M ], for y 2 Y, M ⇢ X .

The notion of covariate shift was introduced by Shimodaira (2000). It is based
on the possibly most popular invariance assumption for the relationship be-
tween source distribution and target distribution: The posterior class probabil-
ities (sometimes called the ‘concept’) remain unchanged. We quote mutandis
mutatis the definition of covariate shift from Kpotufe and Martinet (2021).

Definition 2 (Covariate Shift). For each y 2 Y, there exists a measurable
function ⌘y : X ! [0, 1], called posterior class probability, such that

P [Y = y |X = x] = ⌘y(x) = Q[Y = y |X = x], (5)

almost surely for all x under PX and under QX .

Class distribution estimation in the presence of covariate shift is discussed below
in Section 4.

Against the backdrop that, under the assumptions of this paper, it is impos-
sible to distinguish prior probability shift and covariate shift solely on the basis
of data, the following notion of factorizable joint shift (FJS) as proposed by He
et al. (2021) is very appealing at first glance. For it includes both prior proba-
bility shift and covariate shift as special cases and, thus, may be interpreted as
interpolating between these two poles of dataset shift.

Definition 3 (Factorizable joint shift (FJS)). There exist non-negative func-
tions u on X and v on Y such that for the importance weight function w as
defined in (2a), it holds that

w(x, y) = u(x) v(y), (6a)

almost surely for all (x, y) 2 X ⇥ Y under P .

Observe that the functions u and v of Definition 3 are not uniquely determined
because for any c > 0 the functions uc = c u and vc = v/c also satisfy (6a):

w(x, y) = uc(x) vc(y). (6b)

No invariance property between the source and target distributions is obvious
from Definition 3. Such a property, nonetheless, is implied by Theorem 1 below
in Section 5 which is devoted to a discussion of FJS.
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Chen et al. (2022) proposed “a new distribution shift model, Sparse Joint
Shift (SJS), which considers the joint shift of both labels and a few features.
This unifies and generalizes existing shift models including label shift and sparse
covariate shift1, where only marginal feature or label distribution shifts are con-
sidered.”

Definition 4 (Sparse Joint Shift (SJS)). Let T : X ! T be a measurable
transformation of the feature values x. The source distribution P and the target
distribution Q are related through T -SJS if it holds for all y 2 Y and M ⇢ X
that

PY=y[X 2 M |T (X) = t] = QY=y[X 2 M |T (X) = t] (7)

for all t 2 T almost surely under PT (X) and QT (X).

Under SJS, the doubly conditioned (by class and by a transformation of the
features) feature distributions are invariant between source distribution and tar-
get distribution. Note that T (X) in general creates a ‘sparse’ or ‘thinned out’
version of the features. Chen et al. (2022, Section 3.1) called this type of shift
‘sparse’ because “the sparsity is necessary for the shift to be identifiable”.
Choosing T in Definition 4 as T (x) = c for all x 2 X , where c is some fixed value,
shows that prior probability shift in the sense of Definition 1 is a special case of
SJS. In certain limited circumstances, covariate shift implies SJS and vice versa,
as is discussed below in Section 6. In general, however, covariate shift is not a
special case of SJS.
If P and Q are related through an ‘exponential tilt model’ as defined in Section 3
of Maity et al. (2023) then P and Q are also related through SJS.

4 Covariate shift

This section gives a brief overview of class distribution estimation under covariate
shift. The topic appears to not have received much attention in the literature,
with the exceptions of Card and Smith (2018) and Tasche (2022a).

Class prior estimators. If C = (C1, . . . , C`) is a multinomial classifier as
defined by (4), classify & count (Forman, 2005) might be the most obvious class
prior estimator eQn[Y = y], y = 1, . . . , `, under any type of dataset shift:

eQn[Y = y] =
1

n

nX

i=1

1Cy (xi),

where x1, . . . , xn is a test sample of feature values, assumed to have been gen-
erated with the target feature distribution QX . If x1, . . . , xn is an i.i.d. sample
from QX , it follows that eQn[Y = y] ! Q[X 2 Cy] for n ! 1. However, given
that QX may be any distribution on X , under covariate shift there is no reason
1 See Definition 6 below for a definition of sparse covariate shift.



62 D. Tasche

why Q[X 2 Cy] should equal Q[Y = y] unless C is a perfect classifier under the
target distribution Q – which is an unrealistic assumption.

As noted by Card and Smith (2018), valid estimates bQn[Y = y] of the target
prior probabilities Q[Y = y], y = 1, . . . , `, under covariate shift can be obtained
by taking recourse to the law of total probability. The law of total probability
implies

Q[Y = y] = EQ

⇥
P [Y = y |X]

⇤
=

Z

X
P [Y = y |X = x]QX(dx). (8a)

This gives the estimator

bQn[Y = y] =
1

n

nX

i=1

bP [Y = y |X = xi], (8b)

where x1, . . . , xn is a test sample of feature values, as described above, and
bP [Y = y |X = x] denotes an estimate of the posterior probability P [Y = y |X =
x] under the source distribution P , evaluated at the feature value x. Estimator
(8b) was called probabilistic classify and count (PCC) by Card and Smith (2018)
and probability estimation & average (P&A) by Bella et al. (2010).

With the feature importance weight function wX defined by (2b), under
covariate shift it holds true that

Q[Y = y] = EP [wX(X)1{y}(Y )], y 2 Y. (9a)

Hence, once the importance weight function wX has been estimated from a
sample of features generated under P and another sample of features generated
under Q, the class prior probabilities Q[Y = y] can be estimated by means of
the estimator

Q̄m[Y = y] =
1

m

mX

i=1

wX(xi)1{y}(yi), (9b)

where (x1, y1), . . . , (xm, ym) is an i.i.d. sample of (X,Y ) under the source distri-
bution P . A variety of methods is available for estimating wX , see e.g. Sugiyama
et al. (2012) or Bickel et al. (2009). Card and Smith (2018) might have deployed
estimator (9b), calling it reweighting estimator. They did not, however, provide
an explicit formula for it. A potential application of (9b) would be to make use of
it for cross-checking primary estimates of the target prior probabilities resulting
from an application of (8b).

Dimension reduction. X may be a high dimensional random vector such that
precisely estimating x 7! P [Y = y |X = x] is difficult, and also the computation
of the high-dimensional integral on the right-hand side of (8a) is a hard task.
Hence, is it possible to reduce the dimension of X by applying a transformation
T such that T (X) has a lower dimension than X but some version of (8a), e.g.
like (10a), still holds true:

Q[Y = y]
?
= EQ

⇥
P [Y = y |T (X)]

⇤
=

Z

T
P [Y = y |T (X) = t]QT (X)(dt), (10a)
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supposing that the transformation T takes its values in T .
Tasche (2022a, Theorem 1) showed that

P [Y = y |T (X)] = Q[Y = y |T (X)] (10b)

is true under covariate shift with the same transformation T (X) for all target
distributions Q which are absolutely continuous with respect to the fixed source
distribution P if and only if

P [Y = y |T (X) = T (x)] = P [Y = y |X = x], (11)

almost surely for all x under PX . (11) means that T (X) is sufficient for X with
respect to Y = y (see Tasche, 2021, Section 3). In general, requesting sufficiency
for T (X) excludes simple approaches to dimension reduction for X. Hence, most
of the time there is no guarantee that (10b) and consequently also (10a) are
applicable.

Although (10b) is not true in general without an assumption of sufficiency,
thanks to the generalised Bayes’ theorem (Klebaner, 2005, Theorem 10.8) co-
variate shift can still be shown to imply the following variation of (5) for a fixed
target distribution Q:

Proposition 1. Suppose that Q is absolutely continuous with respect to P and
Q and P are related through covariate shift in the sense of Definition 2. Then it
follows for any measurable transformation T : X ! T and all y 2 Y that

Q[Y = y |T (X) = t] =
EP

⇥
wX(X)1{y}(Y ) |T (X) = t]

⇤

EP [wX(X) |T (X) = t]
,

for all t 2 T almost surely under PT (X), where wX is defined as in (2b).

As a consequence of Proposition 1, (10b) holds true for fixed Q if and only if

EP

⇥
wX(X)1{y}(Y ) |T (X)] = EP [wX(X) |T (X)]P [Y = y |T (X)], (12)

i.e. if wX(X) and {Y = y} are independent conditional on T (X) under P . Such
conditional independence, in particular, follows if T (X) is sufficient for X with
respect to {Y = y}. Accordingly, in principle it is possible to check by means
of verification of (12) whether or not (10a) can be applied. This involves the
estimation of wX which, at first glance, might not be much easier or even harder
than estimating P [Y = y |X].

See, however, Stojanov et al. (2019, Section 3) for a method to identify a
transformation T such that T (X) is approximately sufficient for X with respect
to all {Y = y}, y 2 Y. By (12), then (10b) holds for the target distribution Q
in question such that (10a) is applicable.

5 Factorizable joint shift (FJS)

He et al. (2021) characterised FJS by claiming that “the biases coming from
the data and the label are statistically independent”, without specifying any
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detail of the claim in technical terms. Tasche (2022b) suggested that FJS might
be interpreted as a structural property similar to the ‘separation of variables’
which plays an important role for finding closed-form solutions to differential
equations.

As noted by He et al. (2021), covariate shift is a special case of FJS because
of

w(x, y) = wX(x) (13a)

for wX defined by (2b), and prior probability shift is a special case of FJS because
of

w(x, y) =
Q[Y = y]

P [Y = y]
. (13b)

Characterising FJS. He et al. (2021) also noted that FJS is not fully identifi-
able in the unsupervised setting of this paper, i.e. if no labels are observed in the
target dataset. In the remainder of this section, we summarise the analysis of
FJS performed by Tasche (2022b) and clarify the additional assumptions needed
to achieve identifiability for FJS.

The following theorem implies, among other things, an invariance property
between source distribution P and target distribution Q thanks to FJS (see
Eq. (15) below).

Theorem 1. Suppose that the source distribution P and the target distribution
Q are related by FJS in the sense of Definition 3. Denote by wX the feature
importance weight function defined by (2b) and let qi = Q[Y = i] and pi =
P [Y = i], i = 1, . . . , `.
Then, up to a constant factor c as in (6b), it follows that

v(y) =
`�1X

i=1

%i
qi
pi

1{i}(y) +
q`
p`

1{`}(y) and (14a)

u(x) =
wX(x)

P`�1
i=1 %i

qi
pi

P [Y = i |X = x] + q`
p`

P [Y = ` |X = x]
, (14b)

where the constants %1, . . . , %`�1 are positive and finite and satisfy the following
equation system (with j = 1, . . . , `� 1):

pj = %j EP

"
wX(X)P [Y = j |X]

P`�1
i=1 %i

qi
pi

P [Y = i |X] + q`
p`

P [Y = ` |X]

#
. (14c)

Conversely, suppose that for the source distribution P a function wX : X !
[0,1) with EP

⇥
wX(X)

⇤
= 1 and (qi)i=1,...,` 2 (0, 1)` with

P`
i=1 qi = 1 are

given. Assume also that %1 > 0, . . ., %`�1 > 0 are solutions of the equation
system (14c) and u and v are defined by (14b) and (14a), respectively. Then
w(x, y) = u(x) v(y) has the property that w(x, y) p(x, y) is the density of a prob-
ability measure Q on X ⇥ Y such that wX(x) pX(x) is the marginal density of
the feature variable X under Q and Q[Y = i] = qi holds for i = 1, . . . , `.
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See Tasche (2022b, Theorem 2) for a proof of Theorem 1. The theorem charac-
terises FJS through equations (14b), (14a) and (14c) but does not provide any
information regarding the existence or uniqueness of solutions to (14c). A result
on existence and uniqueness of the solutions to (14c) was proven for the binary
case ` = 2 by Tasche (2022b, Proposition 2).

It can be shown (Tasche, 2022b, Corollary 4) that Theorem 1 implies the
following version of the correction formula for class posterior probabilities of
Saerens et al. (2001, Eq. (2.4)) and Elkan (2001, Theorem 2) under FJS.

Corollary 1. Suppose that the source distribution P and the target distribution
Q are related through FJS in the sense of Definition 3. Then the target posterior
probabilities Q[Y = j |X = x], j = 1, . . . , `, can be represented almost surely for
all x under QX as functions of the source posterior probabilities P [Y = j |X =
x], j = 1, . . . , `, in the following way:

Q[Y = j |X = x] =
%j

Q[Y=j]
P [Y=j]P [Y = j |X = x]

P`�1
i=1 %i

Q[Y=i]
P [Y=i]P [Y = i |X = x] + Q[Y=`]

P [Y=`]P [Y = ` |X = x]
,

j = 1, . . . , `� 1,

Q[Y = ` |X = x] =

Q[Y=`]
P [Y=`]P [Y = ` |X = x]

P`�1
i=1 %i

Q[Y=i]
P [Y=i]P [Y = i |X = x] + Q[Y=`]

P [Y=`]P [Y = ` |X = x]
,

where the positive constants %1, . . . , %`�1 satisfy the equation system (14c).

Corollary 1 in turn implies that under FJS the following invariance property
holds true:

Q[Y = j |X]

Q[Y = ` |X]

Q[Y = `]

Q[Y = j]
= %j

P [Y = j |X]

P [Y = ` |X]

P [Y = `]

P [Y = j]
, j = 1, . . . , `� 1, (15)

where the constants %j satisfy the equation system (14c). Eq. (15) may be in-
terpreted as stating that under factorizable joint shift the ratios of the class-
conditional feature densities are invariant between source and target distribu-
tions up to a constant factor (see Tasche, 2022b, Remark 1).

Class distribution estimation under FJS. Theorem 1 suggests two obvious
ways to learn the characteristics of factorizable joint shift:

a) If the target prior class probabilities Q[Y = i] = qi are known (for instance
from external sources) solve (14c) for the constants %i.

b) If the target prior class probabilities Q[Y = i] = qi are unknown (as would
be the case for the problem of class distribution estimation), fix values for
the constants %i and solve (14c) for the qi. Letting %i = 1 for all i is a natural
choice that converts (14c) into the system of maximum likelihood equations
for the qi under the prior probability shift assumption.

See Section 4.2.4 of Tasche (2013) for an example of approach a) from the area of
credit risk. Whenever for a given marginal target feature distribution QX there
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is more than one set of potential target class prior probabilities qy, y = 1, . . . , `,
such that (14c) can be solved for the %i, then a case of unidentifiability of the
joint target distribution Q under FJS is incurred. This always holds for the
binary case ` = 2 because for any given combination of joint source distribution
P , target feature distribution QX and target prior probability q1 = Q[Y = 1], a
constant %1 can be found such that P and Q are related through FJS (Tasche,
2022b, Proposition 2).

Regarding the interpretation of (14c) in approach b) as maximum likelihood
equations, see Du Plessis and Sugiyama (2014). This interpretation, in particular,
implies that an EM (expectation maximisation) algorithm can be deployed for
solving the equation system (Saerens et al., 2001) in the case 1 = %1 = . . . = %`�1.

6 Sparse joint shift (SJS)

Definition 4 of SJS slightly generalises Definition 1 of Chen et al. (2022) as can
be seen by choosing T as extractor of a subset of the components of the feature
vector. The equivalence of this special case of Definition 4 and the definition of
Chen et al. (2022) then follows from Proposition 3.8 of Tasche (2023).

Observe that by the generalised Bayes’ theorem (Klebaner, 2005, Theo-
rem 10.8), (7) can equivalently be stated as

P [X 2 M,Y = y |T (X) = t]

P [Y = y |T (X) = t]
=

Q[X 2 M,Y = y |T (X) = t]

Q[Y = y |T (X) = t]
. (16)

The following properties of SJS were first noted by Tasche (2023).

Proposition 2 (Properties of SJS). Suppose that the source distribution P
and the target distribution Q are related through T -SJS in the sense of Defini-
tion 4. Then the following two statements hold true:

(i) If T 0 : X ! T 0 and S : T 0 ! T are measurable transformations such that
for all x 2 X it holds that T (x) = (S �T 0)(x) = S

�
T 0(x)

�
, then P and Q are

also related through T 0-SJS.
(ii) For all i 2 Y, it holds that

Q[Y = i |X = x] =

Q[Y=i |T (X)=T (x)]
P [Y=i |T (X)=T (x)] P [Y = i |X = x]

P`
j=1

Q[Y=j |T (X)=T (x)]
P [Y=j |T (X)=T (x)] P [Y = j |X = x]

,

for all x 2 X almost surely under QX .

See Tasche (2023, Corollary 4.3) for a proof of Proposition 2 (i) and Tasche
(2023, Proposition 4.5) for a proof of Proposition 2 (ii). By Proposition 2 (i),
prior probability shift implies T -SJS for any transformation T : X ! T . Proposi-
tion 2 (ii) is another generalisation of the posterior correction formula of Saerens
et al. (2001, Eq. (2.4)) and Elkan (2001, Theorem 2), this time under the as-
sumption of SJS.

The next result rephrases the identifiability result of (Chen et al., 2022,
Theorem 1) in terms of conditional expectations instead of joint densities.
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Theorem 2 (Identifiability under SJS). Suppose that there are distributions
P , Q and Q0 on X ⇥ Y as well as transformations T : X ! T and T 0 : X ! T 0

such that P and Q are related through T -SJS and P and Q0 are related through
T 0-SJS. For given measurable functions fi : X ! [0,1), i = 1, . . . , `, define the
random matrix R(X) =

�
Rij(X)

�
i,j2{1,...,`} by

Rij(X) =
EP

⇥
fi(X)1{j}(Y ) | (T (X), T 0(X))

⇤

P
⇥
Y = j | (T (X), T 0(X))

⇤ .

If QX = Q0
X and P

⇥
rank

�
R(X)

�
= `

⇤
= 1 is true, then it follows that Q[Y =

y, X 2 M ] = Q0[Y = y, X 2 M ] for all y 2 Y and measurable M ⇢ X .
See Tasche (2023, Theorem 4.7) for a proof of Theorem 2. The rank condition
of Theorem 2 is likely to be satisfied for instance if fi(X) = 1Ci(X) for some
reasonably accurate classifier C = (C1, . . . , C`) as in (4). Hence identifiability of
SJS ought to be given most of the time.

SJS and covariate shift. As seen above, prior probability shift is not only
a special case of SJS but also implies T -SJS for any transformation T of the
features. In contrast, examples by Chen et al. (2022) and Tasche (2023) show
that covariate shift and SJS are unrelated properties in the sense that they do
not imply one another but do not exclude each other either.

For a full understanding of the relationship of covariate shift and SJS, we
introduce two further types of dataset shift. The first of these was proposed by
Tasche (2023, Definition 4.11).
Definition 5 (Conditional distribution invariance (CDI)). Let T : X !
T be a measurable transformation of the feature variable X. The source distri-
bution P and the target distribution Q are related through T -CDI if it holds for
all M ⇢ X that

P [X 2 M |T (X) = t] = Q[X 2 M |T (X) = t] (17)

for all t 2 T almost surely under PT (X) and QT (X).
The property CDI is interesting because in principle its presence can be evi-
denced by comparing statistics estimated from the feature observations in the
training and test datasets. No label observations are needed. Moreover, in the
presence of CDI, there is basically no difference between covariate shift and SJS,
as we will see below.

The following additional type of dataset shift was introduced by Chen et al.
(2022, Definition 3).
Definition 6 (Sparse Covariate Shift (SCS)). Let T : X ! T be a mea-
surable transformation of the feature variable X. The source distribution P and
the target distribution Q are related through T -SCS if it holds for all y 2 Y and
M ⇢ X that

P [X 2 M,Y = y |T (X) = t] = Q[X 2 M,Y = y |T (X) = t] (18)

for all t 2 T almost surely under PT (X) and QT (X).
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The following theorem describes the interplay of SJS and covariate shift in
the presence of CDI.

Theorem 3. Let T : X ! T be a measurable transformation of the feature
variable X. Suppose that a source distribution P and a target distribution Q on
X ⇥ Y are given. Then the following three statements hold true:

(i) If P and Q are related through both T -CDI in the sense of Definition 5 and
covariate shift in the sense of Definition 2, then P and Q are also related
through T -SCS in the sense of Definition 6.

(ii) If P and Q are related through T -SCS, they are also related through both
T -SJS and T -CDI.

(iii) For given measurable functions fi : X ! [0,1), i = 1, . . . , `, define the
random matrix R(X) =

�
Rij(X)

�
i,j2{1,...,`} by

Rij(X) =
Ep

⇥
fi(X)1{j}(Y ) |T (X)

⇤

P
⇥
Y = j |T (X)

⇤ .

Suppose that P
⇥
rank

�
R(X)

�
= `

⇤
= 1 holds true. Then, if P and Q are re-

lated through both T -SJS and T -CDI, they are also related through covariate
shift.

For the derivation of Theorem 3, see Theorem 4.16 and Remark 4.18 of Tasche
(2023). Somewhat oversimplifying, we might summarise Theorem 3 with the
following ‘equation’: SCS = covariate shift \ CDI = SJS \ CDI.

Class distribution estimation under SJS. Chen et al. (2022) proposed
two methods for estimating SJS: SEES-c for the case of continuous features
and SEES-d for the case of discrete features (SEES = “shift estimation and
explanation under SJS”). In this paper, we briefly describe only an important
special case of SEES-d (Tasche, 2023, Eq. (C.6)) because the results presented by
Chen et al. (2022) appear to suggest that SEES-d is more efficient than SEES-
c. By sufficiently fine discretisation of the feature space, SEES-d can also be
applied to continuous or mixed continuous and discrete feature settings.

Proposition 3 (Conditional confusion matrix approach). Let T : X ! T
be a measurable and discrete transformation of the feature variable X, i.e. with
range T = {t1, . . . , tN}. Suppose that the source distribution P and a target
distribution Q are related through T -SJS in the sense of Definition 4 and that
C = (C1, . . . , C`) is a classifier as in (4). Then for each t 2 T , the target
posterior probabilities qy,t = Q[Y = y |T (X) = t], y 2 Y, satisfy the linear
equation system (with j = 1, . . . , `)

X̀

y=1

qy,t P [X 2 Cj |Y = y, T (X) = t] = Q[X 2 Cj |T (X) = t]. (19a)
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Once the qy,t, y 2 Y, t 2 T , have been determined, by the law of total probability
the target class prior probabilities Q[Y = y] can be calculated via

Q[Y = y] =
NX

i=1

qy,ti Q[T (X) = ti]. (19b)

Therefore, Proposition 3 provides a solution to the class distribution estimation
problem under an assumption of SJS, thereby generalising the confusion ma-
trix approach as described by Saerens et al. (2001, Section 2.3.1). In particular,
Proposition 3 could be deployed to check assumptions of prior probability shift.
By Proposition 2 (i), prior probability shift implies T -SJS for any transforma-
tion T . Hence, in principle, results under prior probability shift by any suitable
method of class distribution estimation must coincide with the results obtained
by combining (19a) and (19b), for any choice of T taking discrete values.

In practice, develop the classifier on the full training dataset. Then stratify
both training dataset and test dataset by T applied to the feature (or covariate)
variable X. After that, treat each of the resulting sub-samples with the confusion
matrix approach as in Saerens et al. (2001, Section 2.3.1) to estimate for each
t 2 T the posterior probabilities Q[Y = y |T (X) = t] = qy,t, y 2 Y. Combine
the posterior probabilities by means of (19b) to obtain estimates of the target
prior probabilities Q[Y = y], y 2 Y.

Examples for possible choices of the transformation T of Proposition 3 might
be found in medical applications: It is plausible that the sensitivity and specificity
of a test for an infection change between training and test datasets but that they
are preserved within the strata when there is stratification by age group and
gender. This would mean that the dataset shift can be described by T -sparse
joint shift with T being the transformation that provides the age group and the
gender of an instance (patient).

7 Conclusions

This paper provides analyses of invariance assumptions for distribution (dataset)
shift, with focus on their suitability for designing class distribution estimators.
Covariate shift, factorizable joint shift, and sparse joint shift are studied in some
detail. Both the ‘covariate’ and the ‘sparse joint’ types of shift are found fit
for designing class distribution estimators. In contrast, factorizable joint shift is
found unsuitable due to lack of identifiability unless additional constraints are
applied.

Sparse joint shift (SJS) is particularly appealing for the fact that it generalises
prior probability shift (label shift) and, therefore, has the potential to provide
meaningful estimates even in contexts where an assumption of prior probability
shift is found untenable. An open research problem is how to identify feature
transformations that entail SJS if they cannot be identified by theoretical con-
siderations. Chen et al. (2022, Section 4.1) suggested two brute-force approaches
but these approaches have issues which might make their application question-
able (Tasche, 2023, Section 5).
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